Geochemistry, zircon ages and whole-rock Nd isotopic systematics for Palaeoproterozoic A-type granitoids in the northern part of the Delhi belt, Rajasthan, NW India: implications for late Palaeoproterozoic crustal evolution of the Aravalli craton

2006 ◽  
Vol 144 (2) ◽  
pp. 361-378 ◽  
Author(s):  
PARAMPREET KAUR ◽  
NAVEEN CHAUDHRI ◽  
INGRID RACZEK ◽  
ALFRED KRÖNER ◽  
ALBRECHT W. HOFMANN

Determination of zircon ages as well as geochemical and Sm–Nd isotope systematics of granitoids in the Khetri Copper Belt of the Aravalli mountains, NW India, constrain the late Palaeoproterozoic crustal evolution of the Aravalli craton. The plutons are typical A-type within-plate granites, derived from melts generated in an extensional tectonic environment. They display REE and multi-element patterns characterized by steep LREE-enriched and almost flat HREE profiles and distinct negative anomalies for Sr, P and Ti. Initial εNd values range from −1.3 to −6.2 and correspond to crustal sources with mean crustal residence ages of 2.5 to 2.1 Ga. A lower mafic crustal anatectic origin is envisaged for these granitoids, and the heterogeneous εNd(t) values are inferred to have been acquired from the magma source region. Zircon Pb–Pb evaporation and U–Pb ages indicate widespread rift-related A-type magmatism at 1711–1660 Ma in the northern Delhi belt and also suggest a discrete older magmatic event at around 1800 Ma. The emplacement ages of the compositionally distinct A-type granitoid plutons, and virtually coeval granulite metamorphism and exhumation in another segment of the Aravalli mountains, further signify that part of the Aravalli crust evolved during a widespread extensional event in late Palaeoproterozoic time.

1995 ◽  
Vol 32 (12) ◽  
pp. 2159-2166 ◽  
Author(s):  
Hulusi Kargi ◽  
Calvin G. Barnes

The Nellie intrusion is a thick (more than 4420 m) mafic to ultramafic layered intrusion with a radiometric age of ~1163 Ma. Rock types change abruptly with stratigraphic height and include norite, pyroxenite, gabbronorite, hornblende gabbro, gabbro, anorthosite, harzburgite, and lherzolite. Norite is most abundant, but gabbro and hornblende gabbro are locally abundant. Rare olivine-rich layers are also present. The general order of crystallization was olivine, orthopyroxene, plagioclase + clinopyroxene, and hornblende. Mg#'s, expressed as 100 Mg/(Mg + Fe), range from 76.3 to 85.8 for olivine, 56.7 to 84.9 for orthopyroxene, 62.5 to 90.3 for clinopyroxene, and 52.4 to 82.8 for amphibole. Mg#'s vary with height and display abrupt reversals, which indicate open-system addition of new mafic magma. Eleven cyclic units were identified on the basis of evidence for injection of basaltic magma; these can be grouped into three megacyclic units. The abundance of orthopyroxene, and mineral compositional evidence for Fe enrichment within cyclic units, indicates that parental magmas were subalkaline and tholeiitic. Plagioclase in equilibrium with olivine ranges from An65 to An46, which precludes an arc-related magma source. Although the intrusion is approximately coeval with Keweenawan magmatism and with emplacement of diabasic dikes in western North America, it is dissimilar in detail to both suites of rocks. Nevertheless, its composition and geophysical setting are consistent with emplacement in an extensional tectonic environment.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Zepeng Wang ◽  
Qinping Tan ◽  
Yong Xia ◽  
Jianzhong Liu ◽  
Chengfu Yang ◽  
...  

Southwestern Guizhou, China, is famous for hosting clusters of Carlin-type Au, Sb, and Hg-Tl deposits. These deposits are thought to be the products of a low-temperature hydrothermal metallogenic event. Calcite and fluorite are common and widespread gangue minerals in Au and Sb deposits, respectively. Ore-related calcite commonly coexists with stibnite, realgar, and orpiment at the periphery of high-grade orebodies in Au deposits, while ore-related fluorite is generally intergrown with stibnite in Sb deposits. In this study, ore-related calcite and fluorite samples from representative Au (Zimudang) and Sb (Dachang) deposits, respectively, were separated, and the rare earth element (REE) concentrations, Sm/Nd isotope ratios, and Sm–Nd isochron ages were analyzed. This study aims to determine the formation ages of the calcite and fluorite and to constrain the age of low-temperature metallogenic event in Southwestern Guizhou. The calcite and fluorite samples contain relatively high total concentrations of REEs (8.21–22.5 μg/g for calcite, 21.7–36.6 μg/g for fluorite), exhibit variable Sm/Nd ratios (0.51–1.01 for calcite, 0.35–0.49 for fluorite), and yield Sm–Nd isochron ages of 148.4 ± 4.8 and 141 ± 20 Ma, respectively. These ages are consistent with the age range constrained by the low-temperature thermochronology of zircon (132–160 Ma), crosscutting relationships of stratigraphy or intrusions (96–160 Ma), and previous dating results (135–150 Ma) in Southwestern Guizhou. Collectively, the ages obtained in this study add new evidence to previous geochronology studies, such that the low-temperature hydrothermal mineralization in Southwestern Guizhou can be constrained to 135–150 Ma, corresponding to the Yanshanian orogeny, which was associated with a weak extensional tectonic environment.


2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Martin Schwindinger ◽  
Roberto F Weinberg ◽  
Richard W White

Abstract Granite genesis and crustal evolution are closely associated with partial melting in the lower or middle crust and extraction of granite magmas to upper crustal levels. This is generally thought to be the leading mechanism by which the upper continental crust became enriched in incompatible components such as the heat-producing elements U and Th through time. However, field evidence from anatectic terrains, the source rocks of granite magmas, raises doubt about the efficiency of this process. Leucosomes and associated leucogranites, representative of melts in such terrains, are often depleted in U, Th and REE compared to their source and therefore unable to enrich the upper crust in these elements. This paper demonstrates using anatectic turbidites exposed on Kangaroo Island that accessory minerals, the main hosts of U, Th and REE, become preferentially concentrated in the melanosomes, effectively removing these elements from the melt. Whole rock geochemistry and detailed petrography suggests that (1) peraluminous melts dissolve only small fractions of monazite and xenotime, because efficient apatite dissolution saturates melt early in phosphorous; and (2) local melt–host reaction emerging from melt migration may cause melt to crystallize in the magma extraction channelways in or close to the magma source region. Crystallization causes oversaturation of the magma triggering crystallization and capture of accessory minerals in the growing biotite-rich selvedge rather than in the melt channel itself. Crystallization of accessory minerals away from the leucosome explains the apparent under-saturation of elements hosted by these accessory minerals in the leucosome and leucogranites. While intense reworking of thick piles of turbidites, common in accretionary orogens, reflect important processes of crustal formation, the fate of accessory phases and the key elements they control, such as the heat producing elements U and Th, are strongly dependent on the interaction between melt and surrounding solids during segregation and extraction.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 711
Author(s):  
Irina Nedosekova ◽  
Nikolay Vladykin ◽  
Oksana Udoratina ◽  
Boris Belyatsky

The Ilmeno–Vishnevogorsk (IVC), Buldym, and Chetlassky carbonatite complexes are localized in the folded regions of the Urals and Timan. These complexes differ in geochemical signatures and ore specialization: Nb-deposits of pyrochlore carbonatites are associated with the IVC, while Nb–REE-deposits with the Buldym complex and REE-deposits of bastnäsite carbonatites with the Chetlassky complex. A comparative study of these carbonatite complexes has been conducted in order to establish the reasons for their ore specialization and their sources. The IVC is characterized by low 87Sr/86Sri (0.70336–0.70399) and εNd (+2 to +6), suggesting a single moderately depleted mantle source for rocks and pyrochlore mineralization. The Buldym complex has a higher 87Sr/86Sri (0.70440–0.70513) with negative εNd (−0.2 to −3), which corresponds to enriched mantle source EMI-type. The REE carbonatites of the Chetlassky сomplex show low 87Sr/86Sri (0.70336–0.70369) and a high εNd (+5–+6), which is close to the DM mantle source with ~5% marine sedimentary component. Based on Sr–Nd isotope signatures, major, and trace element data, we assume that the different ore specialization of Urals and Timan carbonatites may be caused not only by crustal evolution of alkaline-carbonatite magmas, but also by the heterogeneity of their mantle sources associated with different degrees of enrichment in recycled components.


Author(s):  
James Flinders ◽  
John D. Clemens

ABSTRACT:Most natural systems display non-linear dynamic behaviour. This should be true for magma mingling and mixing processes, which may be chaotic. The equations that most nearly represent how a chaotic natural system behaves are insoluble, so modelling involves linearisation. The difference between the solution of the linearised and ‘true’ equation is assumed to be small because the discarded terms are assumed to be unimportant. This may be very misleading because the importance of such terms is both unknown and unknowable. Linearised equations are generally poor descriptors of nature and are incapable of either predicting or retrodicting the evolution of most natural systems. Viewed in two dimensions, the mixing of two or more visually contrasting fluids produces patterns by folding and stretching. This increases the interfacial area and reduces striation thickness. This provides visual analogues of the deterministic chaos within a dynamic magma system, in which an enclave magma is mingling and mixing with a host magma. Here, two initially adjacent enclave blobs may be driven arbitrarily and exponentially far apart, while undergoing independent (and possibly dissimilar) changes in their composition. Examples are given of the wildly different morphologies, chemical characteristics and Nd isotope systematics of microgranitoid enclaves within individual felsic magmas, and it is concluded that these contrasts represent different stages in the temporal evolution of a complex magma system driven by nonlinear dynamics. If this is true, there are major implications for the interpretation of the parts played by enclaves in the genesis and evolution of granitoid magmas.


Sign in / Sign up

Export Citation Format

Share Document