Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism

1993 ◽  
Vol 119 (3) ◽  
pp. 283-297 ◽  
Author(s):  
Dmitri A. Ionov ◽  
Claude Dupuy ◽  
Suzanne Y. O'Reilly ◽  
Maya G. Kopylova ◽  
Yury S. Genshaft
Lithos ◽  
2021 ◽  
Vol 386-387 ◽  
pp. 106001
Author(s):  
Miguel Ángel Galliski ◽  
Albrecht von Quadt ◽  
María Florencia Márquez-Zavalía

1995 ◽  
Vol 7 (1) ◽  
pp. 73-85 ◽  
Author(s):  
A.D. Morrison ◽  
A. Reay

At Terra Cotta Mountain, in the Taylor Glacier region of south Victoria Land, a 237 m thick Ferrar Dolerite sill is intruded along the unconformity between basement granitoids and overlying Beacon Supergroup sedimentary rocks. Numerous Ferrar Dolerite dykes intrude the Beacon Supergroup and represent later phases of intrusion. Major and trace element data indicate variation both within and between the separate intrusions. Crystal fractionation accounts for much of the geochemical variation between the intrusive events. However, poor correlations between many trace elements require the additional involvement of open system processes. Chromium is decoupled from highly incompatible elements consistent with behaviour predicted for a periodically replenished, tapped and fractionating magma chamber. Large ion lithophile element-enrichment and depletion in Nb, Sr, P and Ti suggests the addition of a crustal component or an enriched mantle source. The trace element characteristics of the Dolerites from Terra Cotta Mountain are similar to those of other Ferrar Group rocks from the central Transantarctic Mountains and north Victoria Land, as well as with the Tasmanian Dolerites. This supports current ideas that the trace element signature of the Ferrar Group is inherited from a uniformly enriched mantle source region.


1997 ◽  
Vol 61 (405) ◽  
pp. 257-269 ◽  
Author(s):  
Suzanne Y. O'Reilly ◽  
D. Chen ◽  
W. L. Griffin ◽  
C. G. Ryan

AbstractThe proton microprobe has been used to determine contents of Ca, Ti, Ni, Mn and Zn in the olivine of 54 spinel lherzolite xenoliths from Australian and Chinese basalts. These data are compared with proton-probe data for Ni, Mn and Zn in the olivine of 180 garnet peridotite xenoliths from African and Siberian kimberlites. Fe, Mn, Ni and Zn contents are well-correlated; because the spinel lherzolite olivines have higher mean Fe contents than garnet peridotite olivines (average Fo89.6vs. Fo90–92) they also have lower Ni and higher Mn contents. Zn and Fe are well-correlated in garnet peridotite olivine, but in spinel peridotites this relationship is perturbed by partitioning of Zn into spinel. None of these elements shows significant correlation with temperature. Consistent differences in trace-element contents of olivines in the two suites is interpreted as reflecting the greater degree of depletion of Archean garnet peridotites as compared to Phanerozoic spinel lherzolites. Ca and Ti contents of spinel-peridotite olivine are well correlated with one another, and with temperature as determined by several types of geothermometer. However, Ca contents are poorly correlated with pressure as determined by the Ca-in-olivine barometer of Köhler and Brey (1990). This reflects the strong T-dependence of this barometer: the uncertainty in pressure (calculated by this method) which is produced by the ±50°C uncertainty expected of any geothermometer is ca ± 8 kbar, corresponding to the entire width of the spinel-lherzolite field at 900–1200°C.


1995 ◽  
Vol 123 (1-4) ◽  
pp. 53-65 ◽  
Author(s):  
J. Blusztajn ◽  
S.R. Hart ◽  
N. Shimizu ◽  
A.V. McGuire

2012 ◽  
Vol 27 (3) ◽  
pp. 715-728 ◽  
Author(s):  
Nathalie Gassama ◽  
Haino Uwe Kasper ◽  
Aline Dia ◽  
Constantin Cocirta ◽  
Martine Bouhnik-LeCoz

2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Aaron Wolfgang Ashley ◽  
Michael Bizimis ◽  
Anne H Peslier ◽  
Matthew Jackson ◽  
Jasper G Konter

Abstract Water influences geodynamic processes such as melting, deformation and rheology, yet its distribution in the oceanic upper mantle is primarily known indirectly from melt inclusions and glasses of erupted mantle melts (i.e. mid-ocean ridge and ocean island basalts). To better constrain the mechanisms influencing the distribution of H2O in the mantle, particularly regarding the role of metasomatism, we analyzed 15 peridotite xenoliths from Savai‘i and two dunite xenoliths from Ta‘ū (Samoa) for structural H2O (by polarized Fourier transform infrared spectroscopy), and major and trace element concentrations. Clinopyroxenes from the Ta‘ū dunites show trace element concentrations consistent with equilibration with their host lavas, but lower H2O contents than expected. Savai‘i peridotites are highly depleted harzburgites (melt depletion ≥17 %). They show strong evidence of transient metasomatism by both carbonatite and silicate melts, with highly variable Ti and Zr depletions and light rare earth element enrichments. However, despite metasomatism the H2O concentrations in olivines (0 − 4 ppm H2O) and orthopyroxenes (17 − 89 ppm H2O) are among the lowest reported in oceanic xenoliths, but higher than expected for the estimated degree of depletion. In general, H2O concentrations vary less than those of other incompatible trace elements in these samples. Transects across mineral grains show generally homogeneous distributions of H2O, indicating no significant H2O loss or gain during ascent. Raman spectroscopy on inclusions in minerals shows the presence of CO2 but an absence of molecular H2O. This agrees with the absence of H2O concentration variations between inclusion-rich and -poor domains in minerals. The above data can be explained by transient metasomatism along grain boundaries, now recorded as planes of inclusions within annealed grains. Fast diffusion of hydrogen (but not lithophile elements) from the inclusions into the host mineral phase will simultaneously enrich H2O contents across the grain and lower them in the inclusion-rich domains. The result is highly variable metasomatism recorded in lithophile elements, with smaller magnitude H2O variations that are decoupled from lithophile element metasomatism. Comparison with xenoliths from Hawai‘i shows that evidence for metasomatism from lithophile elements alone does not imply rehydration of the oceanic lithosphere. Instead, H2O concentrations depend on the overall amount of H2O added to the lithosphere through metasomatism, and the proximity of sampled material to areas of melt infiltration in the lithosphere.


Sign in / Sign up

Export Citation Format

Share Document