A new electric boundary condition of electric fracture mechanics and its applications

1994 ◽  
Vol 47 (6) ◽  
pp. 793-802 ◽  
Author(s):  
Hao Tian-Hu ◽  
Shen Zi-Yuan
2006 ◽  
Vol 324-325 ◽  
pp. 247-250
Author(s):  
Shu Hong Liu ◽  
Meng Wu ◽  
Shu Min Duan ◽  
Hong Jun Wang

A two-dimensional electromechanical analysis is performed on a transversely isotropic piezoelectric material containing a crack based on the impermeable electric boundary condition. By introducing stress function, a general solution is provided in terms of triangle series. It is shown that the stress and electric displacement are all of 1/2 order singularity in front of the crack tip. In addition, the electromechanical fields in the vicinity of the crack when subjected to uniform tensile mechanical load are obtained using boundary collocation method.


2011 ◽  
Vol 84 (9) ◽  
Author(s):  
Florian Johann ◽  
Alessio Morelli ◽  
Daniel Biggemann ◽  
Miryam Arredondo ◽  
Ionela Vrejoiu

Author(s):  
MingHao Zhao ◽  
XinFei Li ◽  
Chunsheng Lu ◽  
QiaoYun Zhang

In this paper, taking the exact electric boundary conditions into account, we propose a double iteration method to analyze a crack problem in a two-dimensional piezoelectric semiconductor. The method consists of a nested loop process with internal and outside circulations. In the former, the electric field and electron density in governing equations are constantly modified with the fixed boundary conditions on crack face and the crack opening displacement; while in the latter, the boundary conditions on crack face and the crack opening displacement are modified. Such a method is verified by numerically analyzing a crack with an impermeable electric boundary condition. It is shown that the electric boundary condition on crack face largely affects the electric displacement intensity factor near a crack tip in piezoelectric semiconductors. Under exact crack boundary conditions, the variation tendency of the electric displacement intensity factor versus crack size is quite different from that under an impermeable boundary condition. Thus, exact crack boundary conditions should be adopted in analysis of crack problems in a piezoelectric semiconductor.


Sign in / Sign up

Export Citation Format

Share Document