scholarly journals Epitaxial strain and electric boundary condition effects on the structural and ferroelectric properties of BiFeO3films

2011 ◽  
Vol 84 (9) ◽  
Author(s):  
Florian Johann ◽  
Alessio Morelli ◽  
Daniel Biggemann ◽  
Miryam Arredondo ◽  
Ionela Vrejoiu
2006 ◽  
Vol 324-325 ◽  
pp. 247-250
Author(s):  
Shu Hong Liu ◽  
Meng Wu ◽  
Shu Min Duan ◽  
Hong Jun Wang

A two-dimensional electromechanical analysis is performed on a transversely isotropic piezoelectric material containing a crack based on the impermeable electric boundary condition. By introducing stress function, a general solution is provided in terms of triangle series. It is shown that the stress and electric displacement are all of 1/2 order singularity in front of the crack tip. In addition, the electromechanical fields in the vicinity of the crack when subjected to uniform tensile mechanical load are obtained using boundary collocation method.


2010 ◽  
Vol 03 (01) ◽  
pp. 83-88 ◽  
Author(s):  
R. NECHACHE ◽  
C. HARNAGEA ◽  
A. RUEDIGER ◽  
F. ROSEI ◽  
A. PIGNOLET

Bi 2 FeCrO 6 thin films were epitaxially grown by pulsed laser deposition on (100)-oriented LaAlO 3, ( LaAlO 3)0.3( Sr 2 LaTaO 6)0.7 and SrTiO 3 single crystalline substrates with and without epitaxial CaRuO 3 buffered layer. The in-plane compressive strain induces monoclinic distortion of the Bi 2 FeCrO 6 lattice cell. The strain originates from lattice mismatch between CaRuO 3 and single crystal substrates. The similar crystal structure of the substrate and the layer lead to coherent epitaxial growth of the heterostructures and avoid strain relaxation in particular for BFCO films deposited on LaAlO 3 substrates. The ferroelectric character is demonstrated for all grown BFCO films. The residual in-plane strain weakly affects the effective piezoelectric coefficient of BFCO layers.


Author(s):  
MingHao Zhao ◽  
XinFei Li ◽  
Chunsheng Lu ◽  
QiaoYun Zhang

In this paper, taking the exact electric boundary conditions into account, we propose a double iteration method to analyze a crack problem in a two-dimensional piezoelectric semiconductor. The method consists of a nested loop process with internal and outside circulations. In the former, the electric field and electron density in governing equations are constantly modified with the fixed boundary conditions on crack face and the crack opening displacement; while in the latter, the boundary conditions on crack face and the crack opening displacement are modified. Such a method is verified by numerically analyzing a crack with an impermeable electric boundary condition. It is shown that the electric boundary condition on crack face largely affects the electric displacement intensity factor near a crack tip in piezoelectric semiconductors. Under exact crack boundary conditions, the variation tendency of the electric displacement intensity factor versus crack size is quite different from that under an impermeable boundary condition. Thus, exact crack boundary conditions should be adopted in analysis of crack problems in a piezoelectric semiconductor.


Author(s):  
S. G. Ghonge ◽  
E. Goo ◽  
R. Ramesh ◽  
R. Haakenaasen ◽  
D. K. Fork

Microstructure of epitaxial ferroelectric/conductive oxide heterostructures on LaAIO3(LAO) and Si substrates have been studied by conventional and high resolution transmission electron microscopy. The epitaxial films have a wide range of potential applications in areas such as non-volatile memory devices, electro-optic devices and pyroelectric detectors. For applications such as electro-optic devices the films must be single crystal and for applications such as nonvolatile memory devices and pyroelectric devices single crystal films will enhance the performance of the devices. The ferroelectric films studied are Pb(Zr0.2Ti0.8)O3(PLZT), PbTiO3(PT), BiTiO3(BT) and Pb0.9La0.1(Zr0.2Ti0.8)0.975O3(PLZT).Electrical contact to ferroelectric films is commonly made with metals such as Pt. Metals generally have a large difference in work function compared to the work function of the ferroelectric oxides. This results in a Schottky barrier at the interface and the interfacial space charge is believed to responsible for domain pinning and degradation in the ferroelectric properties resulting in phenomenon such as fatigue.


2001 ◽  
Vol 22 (5) ◽  
pp. 35-40 ◽  
Author(s):  
D. C. Look Jr ◽  
Arvind Krishnan

Sign in / Sign up

Export Citation Format

Share Document