Role of the ventral surface of the brain stem in the hypotensive action of clonidine

1975 ◽  
Vol 34 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Pascal Bousquet ◽  
Josiane Feldman ◽  
Jeanne Velly ◽  
Roger Bloch
1997 ◽  
Vol 17 (10) ◽  
pp. 1089-1096 ◽  
Author(s):  
Kazunori Toyoda ◽  
Kenichiro Fujii ◽  
Setsuro Ibayashi ◽  
Tetsuhiko Nagao ◽  
Takanari Kitazono ◽  
...  

We tested the hypothesis that nitric oxide (NO) plays a role in CBF autoregulation in the brain stem during hypotension. In anesthetized rats, local CBF to the brain stem was determined with laser-Doppler flowmetry, and diameters of the basilar artery and its branches were measured through an open cranial window during stepwise hemorrhagic hypotension. During topical application of 10−5 mol/L and 10−4 mol/L Nω-nitro-L-arginine (L-NNA), a nonselective inhibitor of nitric oxide synthase (NOS), CBF started to decrease at higher steps of mean arterial blood pressure in proportion to the concentration of L-NNA in stepwise hypotension (45 to 60 mm Hg in the 10−5 mol/L and 60 to 75 mm Hg in the 10−4 mol/L L-NNA group versus 30 to 45 mm Hg in the control group). Dilator response of the basilar artery to severe hypotension was significantly attenuated by topical application of L-NNA (maximum dilatation at 30 mm Hg: 16 ± 8% in the 10−5 mol/L and 12 ± 5% in the 10−4 mol/L L-NNA group versus 34 ± 4% in the control group), but that of the branches was similar between the control and L-NNA groups. Topical application of 10−5 mol/L 7-nitro indazole, a selective inhibitor of neuronal NOS, did not affect changes in CBF or vessel diameter through the entire pressure range. Thus, endothelial but not neuronal NO seems to take part in the regulation of CBF to the the brain stem during hypotension around the lower limits of CBF autoregulation. The role of NO in mediating dilatation in response to hypotension appears to be greater in large arteries than in small ones.


1993 ◽  
Vol 265 (5) ◽  
pp. R1026-R1035 ◽  
Author(s):  
S. Zhong ◽  
Z. S. Huang ◽  
G. L. Gebber ◽  
S. M. Barman

We tested the hypothesis that brain stem circuits normally generate a 2- to 6-Hz oscillation in sympathetic nerve discharge (SND). Experiments were performed on baroreceptor-denervated decerebrate cats and urethan-anesthetized rats in which renal or splanchnic SND was recorded along with field potentials (population activity) from sites in the rostral ventrolateral medulla, medullary raphe, or medullary lateral tegmental field. Our major findings were as follows. 1) Population activity recorded from the three medullary regions contained a 2- to 6-Hz oscillation. 2) The 2- to 6-Hz oscillation in population activity recorded from some medullary sites was correlated to that in SND. Peak coherence in the 2- to 6-Hz band approached a value of 1 in some cases. 3) Whereas cervical spinal cord transection abolished or markedly reduced SND, the 2- to 6-Hz oscillation in medullary activity was essentially unchanged. These results support the view that the 2- to 6-Hz oscillation in SND can be generated in the brain stem of cats and rats.


1966 ◽  
Vol 24 (2) ◽  
pp. 544-551 ◽  
Author(s):  
George C. Stevenson ◽  
Ronald J. Stoney ◽  
Roland K. Perkins ◽  
John E. Adams

2010 ◽  
Vol 38 (05) ◽  
pp. 869-880 ◽  
Author(s):  
Kentaro Moritaka ◽  
Jorge L. Zeredo ◽  
Mari Kimoto ◽  
Fajar H. Nasution ◽  
Takafumi Hirano ◽  
...  

A descending inhibitory mechanism from the periaqueductal gray (PAG) to the spinal cord through the nucleus raphe magnus (NRM) is strongly involved in endogenous analgesic system produced by acupuncture stimulation. In addition to the PAG to NRM system which descends in the medial pathway of the brain stem, the nucleus reticularis lateralis (NRL) situated in the lateral part of the brain stem is reported to play an important role in modulating centrifugal antinociceptive action. In the present study, to clarify the role of NRL in acupuncture analgesia, we investigated the response properties of NRL neurons to acupuncture stimulation. The majority of NRM-projecting NRL neurons were inhibited by electroacupuncture stimulation. This effect was antagonized by ionophoretic application of naloxone, indicating that endogenous opioids act directly onto these NRL neurons. By contrast, about half of spinal projecting NRL neurons were excited by electroacupuncture stimulation, suggesting that part of the NRL neurons may modulate pain transmission directly at the spinal level.


1990 ◽  
Vol 258 (2) ◽  
pp. R450-R456 ◽  
Author(s):  
J. K. Smith ◽  
K. W. Barron

Gamma-Aminobutyric acid (GABA) and the GABA antagonist bicuculline methiodide were used to investigate the role of GABAergic transmission in the rostral and caudal ventrolateral medulla in 12- to 13-wk-old spontaneously hypertensive (SH) (n = 7) and normotensive, control Wistar-Kyoto (WKY) (n = 7) rats. Animals were anesthetized with urethan (1.25 g/kg sc), paralyzed with gallamine triethiodide (10 mg/kg iv), and artificially ventilated. Femoral arterial and venous catheters were inserted for the measurement of mean arterial pressure (MAP) and heart rate responses and for intravenous infusions. The ventral surface of the brain stem then was exposed. The responsiveness of the rostral ventrolateral medulla to GABA was compared in SH and WKY rats using unilateral microinjections (30 nl) of GABA at 1, 10, and 100 mM concentrations, which produced significantly (P less than 0.05) larger decreases of MAP in SH rats compared with WKY at the 10 and 100 mM concentrations (-37.3 +/- 2.8 mmHg for SH vs. -27.3 +/- 2.7 mmHg for WKY at 100 mM). Tonic GABAergic inhibition was gauged using bilateral microinjections (30 nl) of bicuculline (2 and 4 mM) into the rostral ventrolateral medulla, which caused significantly larger increases in MAP in the WKY group (+84.8 +/- 8.5 mmHg at 4 mM) compared with the SH group (+14.9 +/- 5.8 mmHg at 4 mM). In contrast, the ability to drive sympathetic outflow by microinjection of L-glutamate in the rostral ventrolateral medulla was not significantly different between WKY and SH rats.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 76 (1) ◽  
pp. 353-370 ◽  
Author(s):  
C. A. Scudder ◽  
A. K. Moschovakis ◽  
A. B. Karabelas ◽  
S. M. Highstein

1. The discharge patterns and axonal projections of saccadic long-lead burst neurons (LLBNs) with somata in the pontine reticular formation were studied in alert squirrel monkeys with the use of the method of intraaxonal recording and horseradish peroxidase injection. 2. The largest population of stained neurons were afferents to the cerebellum. They originated in the dorsomedial nucleus reticularis tegmenti pontis (NRTP) including its dorsal cell group (N = 5), the preabducens intrafascicular nucleus (N = 5), and the raphe pontis (N = 1). Axons of all neurons coursed under NRTP and entered brachium pontis without having synapsed in the brain stem. Three axons sent collaterals to the floccular lobe, but other more distant targets of these and the other cerebellar afferents could not be determined. Movement fields of these neurons were intermediate between vectorial and directional types. 3. Four neurons had their somata in nucleus reticularis pontis oralis and terminations in the brain stem reticular formation. Each neuron was different, but all terminated in the region containing excitatory burst neurons, and most terminated in the region containing inhibitory burst neurons. Other targets include nucleus reticularis pontis oralis and caudalis, NRTP, raphe interpositus, and the spinal cord. Discharge patterns included both vectorial and directional types. 4. Two reticulospinal neurons had large multipolar somata either just rostral or ventral to the abducens nucleus. These neurons also projected to the medullary reticular formation, caudal nucleus prepositus hypoglossi, and dorsal and ventral paramedian reticular nucleus. 5. The functional implications of the connections of these LLBNs and those reported in the companion paper are extensively discussed. The fact that the efferents of the superior colliculus target the regions containing medium-lead saccadic burst neurons confirms the role of the colliculus in saccade generation. However, the finding that many other neurons project to these regions and the finding that superior colliculus efferents project more heavily to areas containing reticulospinal neurons argue for a diminished role of the superior colliculus in saccade generation but an augmented role in head movement control.


Sign in / Sign up

Export Citation Format

Share Document