Temperature-sensitive conformational changes in membrane-bound and solubilized [3H]imipramine binding sites

1983 ◽  
Vol 88 (4) ◽  
pp. 407-410 ◽  
Author(s):  
Alan Davis ◽  
Joanne M. Morris ◽  
Siu W. Tang
2018 ◽  
Author(s):  
Matthew L. Starr ◽  
Robert P. Sparks ◽  
Logan R. Hurst ◽  
Zhiyu Zhao ◽  
Andres Arango ◽  
...  

SUMMARYEukaryotic homeostasis relies on membrane fusion catalyzed by SNARE proteins. Inactive SNARE bundles are re-activated by Sec18/NSF driven disassembly to enable a new round of fusion. We previously found that phosphatidic acid (PA) binds Sec18 to sequester it from SNAREs. Dephosphorylation of PA dissociates Sec18 from the membrane allowing it to engage SNARE complexes. We now report that PA induces conformational changes in Sec18 protomers, while hexameric Sec18 cannot bind PA membranes. The association of Sec18 with PA was shown to be sensitive to membrane curvature, suggesting that regulation could vary on different organelles in a curvature dependent manner. Molecular dynamics showed that PA binding sites exist on the D1 and D2 domains of Sec18 and that residues needed for binding were masked in the hexameric form of the protein. Together these data indicate that PA regulates Sec18 function through altering protein architecture and stabilizing membrane-bound protomers.


Author(s):  
A. Brisson

The acetylcholine receptor protein plays a leading part in the synaptic transmission mechanism. The binding of the neurotransmitter, acetylcholine, to the protein triggers conformational changes, allowing the translocation of ions through the membrane. The structural relationships between the binding sites of the cholinergic ligands and the translocating part of the protein are still unknown, as the subunit composition is. A better knowledge of the structure of the acetylcholine receptor protein is the aim of the present study.Negatively stained preparations of purified cholinergic receptor protein and of membrane fragments rich in acetylcholine receptor protein are characterized by the presence of particles having a diameter of 8-9 mm, and exhibiting a doughnut like structure, with a central pit filled with stain. The variability in the stain distribution on the particle surface did'nt allow to determine the subunit structure of the protein. In the case of crystalline biological specimens, methods of averaging have allowed to overcome this problem; then, we have tried to crystallize the membrane-bound cholinergic receptor protein.


1988 ◽  
Vol 254 (4) ◽  
pp. G513-G521 ◽  
Author(s):  
J. A. Williams ◽  
A. C. Bailey ◽  
E. Roach

125I-labeled cholecystokinin (CCK) binding and internalization were studied as a function of temperature in isolated rat pancreatic acini. At 37 degrees C, acini readily bound and degraded 125I-CCK. When labeled hormone binding was inhibited by increasing amounts of unlabeled CCK, competition-inhibition curves were biphasic, consistent with both high- (Kd, 18 pM) and low-affinity (Kd, 13 nM) binding sites. At 4 degrees C, acini bound only one-third as much 125I-CCK and degradation was essentially abolished. At 4 degrees C, CCK competition curves were consistent with a single class of low-affinity binding sites (Kd, 19 nM). Internalization of 125I-CCK was evaluated by three washing procedures utilizing acid, base, and trypsin. All were shown to remove membrane-bound 125I-CCK, and this finding was validated for trypsin by electron microscope autoradiography. After 1 h at 37 degrees C, washing showed 67% of bound 125I-CCK to be internalized and autoradiography showed 54% to be internalized. At 4 degrees C, internalization of bound CCK was greatly reduced but not abolished. When internalization of 125I-CCK was evaluated as a function of the medium concentration of CCK, both high- and low-affinity components were observed. These results suggest that high-affinity CCK binding and CCK internalization are separate temperature-sensitive processes. Moreover, internalization is not uniquely associated with high-affinity binding.


1994 ◽  
Vol 3 (12) ◽  
pp. 2294-2301 ◽  
Author(s):  
Jianhua Wu ◽  
Stathis Frillingos ◽  
John Voss ◽  
H. Ronald Kaback

1984 ◽  
Vol 99 (3) ◽  
pp. 1024-1033 ◽  
Author(s):  
D P Kiehart ◽  
T D Pollard

Monoclonal and polyclonal antibodies that bind to myosin-II were tested for their ability to inhibit myosin ATPase activity, actomyosin ATPase activity, and contraction of cytoplasmic extracts. Numerous antibodies specifically inhibit the actin activated Mg++-ATPase activity of myosin-II in a dose-dependent fashion, but none blocked the ATPase activity of myosin alone. Control antibodies that do not bind to myosin-II and several specific antibodies that do bind have no effect on the actomyosin-II ATPase activity. In most cases, the saturation of a single antigenic site on the myosin-II heavy chain is sufficient for maximal inhibition of function. Numerous monoclonal antibodies also block the contraction of gelled extracts of Acanthamoeba cytoplasm. No polyclonal antibodies tested inhibited ATPase activity or gel contraction. As expected, most antibodies that block actin-activated ATPase activity also block gel contraction. Exceptions were three antibodies M2.2, -15, and -17, that appear to uncouple the ATPase activity from gel contraction: they block gel contraction without influencing ATPase activity. The mechanisms of inhibition of myosin function depends on the location of the antibody-binding sites. Those inhibitory antibodies that bind to the myosin-II heads presumably block actin binding or essential conformational changes in the myosin heads. A subset of the antibodies that bind to the proximal end of the myosin-II tail inhibit actomyosin-II ATPase activity and gel contraction. Although this part of the molecule is presumably some distance from the ATP and actin-binding sites, these antibody effects suggest that structural domains in this region are directly involved with or coupled to catalysis and energy transduction. A subset of the antibodies that bind to the tip of the myosin-II tail appear to inhibit ATPase activity and contraction through their inhibition of filament formation. They provide strong evidence for a substantial enhancement of the ATPase activity of myosin molecules in filamentous form and suggest that the myosin filaments may be required for cell motility.


1991 ◽  
Vol 274 (2) ◽  
pp. 457-463 ◽  
Author(s):  
J J Calvete ◽  
J Arias ◽  
M V Alvarez ◽  
M M Lopez ◽  
A Henschen ◽  
...  

The precise localization of the epitopes for six monoclonal antibodies specific for the N-terminal region of human platelet glycoprotein IIIa (GPIIIa) was determined. The epitope for P37, a monoclonal antibody that inhibits platelet aggregation, was found at GPIIIa 101-109, flanked by the epitopes for P23-3 (GPIIIa 16-28), P23-4 (GPIIIa 83-91), P23-5 (GPIIIa 67-73), P23-7 (GPIIIa 114-122) and P40 (GPIIIa 262-302), and very close to the early chymotryptic cleavage site of GPIIIa in whole platelets (Phe-100). When the amino acid sequence of GPIIIa was searched for peptide sequences hydropathically complementary to the fibrinogen gamma-chain C-terminal (gamma 400-411) and A alpha-chain RGD-containing peptides, none was found for the gamma 400-411, two (GPIIIa 128-132 and 380-384) were found complementary to fibrinogen A alpha 571-575 and two (GPIIIa 109-113 and 129-133) were found for A alpha 94-99. Two of these putative fibrinogen-binding sites overlap with each other, and a third one overlaps with the epitope for P37. These findings reinforce the earlier suggestion that the N-terminal region of GPIIIa is involved in fibrinogen binding, and suggest the existence in GPIIIa of either multiple or alternative RGD-binding sites or one RGD-binding domain with several moieties. Finally, early chymotryptic cleavage of GPIIIa in whole platelets liberates to the soluble fraction the peptide stretch Ser-101-Tyr-348, which carries the epitope for P37 and the putative binding sites for fibrinogen. The rest of the molecule, together with the GPIIb-resistant moiety, remains membrane-bound. This leads us to propose that the fibrinogen-binding domain of GPIIIa is not involved in the binding to GPIIb to form the Ca2(+)-dependent GPIIb-GPIIIa complex.


2008 ◽  
Vol 73 (1) ◽  
pp. 41-53
Author(s):  
Aleksandra Rakic ◽  
Petar Mitrasinovic

The present study characterizes using molecular dynamics simulations the behavior of the GAA (1186-1188) hairpin triloops with their closing c-g base pairs in large ribonucleoligand complexes (PDB IDs: 1njn, 1nwy, 1jzx). The relative energies of the motifs in the complexes with respect to that in the reference structure (unbound form of rRNA; PDB ID: 1njp) display the trends that agree with those of the conformational parameters reported in a previous study1 utilizing the de novo pseudotorsional (?,?) approach. The RNA regions around the actual RNA-ligand contacts, which experience the most substantial conformational changes upon formation of the complexes were identified. The thermodynamic parameters, based on a two-state conformational model of RNA sequences containing 15, 21 and 27 nucleotides in the immediate vicinity of the particular binding sites, were evaluated. From a more structural standpoint, the strain of a triloop, being far from the specific contacts and interacting primarily with other parts of the ribosome, was established as a structural feature which conforms to the trend of the average values of the thermodynamic variables corresponding to the three motifs defined by the 15-, 21- and 27-nucleotide sequences. From a more functional standpoint, RNA-ligand recognition is suggested to be presumably dictated by the types of ligands in the complexes.


Sign in / Sign up

Export Citation Format

Share Document