scholarly journals Phosphatidic acid inhibits SNARE priming by inducing conformational changes in Sec18 protomers

2018 ◽  
Author(s):  
Matthew L. Starr ◽  
Robert P. Sparks ◽  
Logan R. Hurst ◽  
Zhiyu Zhao ◽  
Andres Arango ◽  
...  

SUMMARYEukaryotic homeostasis relies on membrane fusion catalyzed by SNARE proteins. Inactive SNARE bundles are re-activated by Sec18/NSF driven disassembly to enable a new round of fusion. We previously found that phosphatidic acid (PA) binds Sec18 to sequester it from SNAREs. Dephosphorylation of PA dissociates Sec18 from the membrane allowing it to engage SNARE complexes. We now report that PA induces conformational changes in Sec18 protomers, while hexameric Sec18 cannot bind PA membranes. The association of Sec18 with PA was shown to be sensitive to membrane curvature, suggesting that regulation could vary on different organelles in a curvature dependent manner. Molecular dynamics showed that PA binding sites exist on the D1 and D2 domains of Sec18 and that residues needed for binding were masked in the hexameric form of the protein. Together these data indicate that PA regulates Sec18 function through altering protein architecture and stabilizing membrane-bound protomers.

2008 ◽  
Vol 73 (1) ◽  
pp. 41-53
Author(s):  
Aleksandra Rakic ◽  
Petar Mitrasinovic

The present study characterizes using molecular dynamics simulations the behavior of the GAA (1186-1188) hairpin triloops with their closing c-g base pairs in large ribonucleoligand complexes (PDB IDs: 1njn, 1nwy, 1jzx). The relative energies of the motifs in the complexes with respect to that in the reference structure (unbound form of rRNA; PDB ID: 1njp) display the trends that agree with those of the conformational parameters reported in a previous study1 utilizing the de novo pseudotorsional (?,?) approach. The RNA regions around the actual RNA-ligand contacts, which experience the most substantial conformational changes upon formation of the complexes were identified. The thermodynamic parameters, based on a two-state conformational model of RNA sequences containing 15, 21 and 27 nucleotides in the immediate vicinity of the particular binding sites, were evaluated. From a more structural standpoint, the strain of a triloop, being far from the specific contacts and interacting primarily with other parts of the ribosome, was established as a structural feature which conforms to the trend of the average values of the thermodynamic variables corresponding to the three motifs defined by the 15-, 21- and 27-nucleotide sequences. From a more functional standpoint, RNA-ligand recognition is suggested to be presumably dictated by the types of ligands in the complexes.


2019 ◽  
Author(s):  
Aoife Harbison ◽  
Elisa Fadda

AbstractThe immunoglobulin type G (IgG) Fc N-glycans are known to modulate the interaction with membrane-bound Fc γ receptors (FcγRs), fine-tuning the antibody’s effector function in a sequence-dependent manner. Particularly interesting in this respect are the roles of galactosylation, which levels are linked to autoimmune conditions and aging, of core fucosylation, which is known to reduce significantly the antibody-dependent cellular cytotoxicity (ADCC), and of sialylation, which also reduces ADCC but only in the context of core-fucosylation. In this work we provide an atomistic level perspective through enhanced sampling computer simulations, based on replica exchange molecular dynamics (REMD), to understand the molecular determinants linking the Fc N-glycans sequence to the observed IgG1 function. Our results indicate that the two symmetrically opposed N-glycans interact extensively through their core trimannose residues. At room temperature the terminal galactose on the α(1-6) arm is restrained to the protein through a network of interactions that keep the arm outstretched, meanwhile the α(1-3) arm extends towards the solvent where a terminal sialic acid remains fully accessible. We also find that the presence of core fucose interferes with the extended sialylated α(1-3) arm, altering its conformational propensity and as a consequence of steric hindrance, significantly enhancing the Fc dynamics. Furthermore, structural analysis shows that the core fucose position within the Fc core obstructs the access of N162 glycosylated FcγRs very much like a “door-stop”, potentially decreasing the IgG/FcγR binding free energy. All of these factors could represent important clues to understand at the molecular level the dramatic reduction of ADCC as a result of core fucosylation and provide an atomistic level-of-detail framework for the design of high potency IgG1 Fc N-glycoforms.


Author(s):  
A. Brisson

The acetylcholine receptor protein plays a leading part in the synaptic transmission mechanism. The binding of the neurotransmitter, acetylcholine, to the protein triggers conformational changes, allowing the translocation of ions through the membrane. The structural relationships between the binding sites of the cholinergic ligands and the translocating part of the protein are still unknown, as the subunit composition is. A better knowledge of the structure of the acetylcholine receptor protein is the aim of the present study.Negatively stained preparations of purified cholinergic receptor protein and of membrane fragments rich in acetylcholine receptor protein are characterized by the presence of particles having a diameter of 8-9 mm, and exhibiting a doughnut like structure, with a central pit filled with stain. The variability in the stain distribution on the particle surface did'nt allow to determine the subunit structure of the protein. In the case of crystalline biological specimens, methods of averaging have allowed to overcome this problem; then, we have tried to crystallize the membrane-bound cholinergic receptor protein.


1987 ◽  
Vol 65 (3) ◽  
pp. 377-384 ◽  
Author(s):  
L. Stuhne-Sekalec ◽  
J. Chudzik ◽  
N. Z. Stanacev

The effect of chlorpromazine on subcellular biosynthesis, hydrolysis, and transfer of lipids and liponucleotides participating in the biosynthesis of polyglycerophosphatides in guinea pig liver was studied. Chlorpromazine showed an apparent stimulation of accumulation of phosphatidic acid and CDP-diglycerides in microsomal membranes and phosphatidylglycerolphosphate in mitochondrial membranes in a concentration-dependent manner that was influenced by incubation time and the nature of fatty acids in CDP-diglycerides. Transfer of membrane-bound CDP-diglycerides from microsomal to mitochondrial membranes was established by the CDP-diglyceride-dependent biosynthesis of phosphatidylglycerolphosphate and phosphatidylglycerol and appeared to be inhibited by the addition of chlorpromazine by about 20%. Evidence was obtained for the formation of a molecular complex between phosphatidic acid and chlorpromazine; this was thought to be responsible for the protection from phosphatidate phosphohydrolase at the concentrations of chlorpromazine and Mg2+ examined.


2017 ◽  
Vol 57 (2) ◽  
pp. 335-344 ◽  
Author(s):  
Sreya Mukherjee ◽  
Aleksandra Karolak ◽  
Marjolaine Debant ◽  
Paul Buscaglia ◽  
Yves Renaudineau ◽  
...  

2018 ◽  
Author(s):  
A. Chattaraj ◽  
M. Youngstrom ◽  
L. M. Loew

AbstractDynamic molecular clusters are assembled through weak multivalent interactions and are platforms for cellular functions, especially receptor-mediated signaling. Clustering is also a prerequisite for liquid-liquid phase separation. But it is not well understood how molecular structure and cellular organization control clustering. Using coarse-grain kinetic Langevin dynamics, we performed computational experiments on a prototypical ternary system modeled after membrane-bound nephrin, the adaptor Nck1 and the actin nucleation promoting factor NWASP. Steady state cluster size distributions favored stoichiometries that optimized binding (stoichiometry matching), but still were quite broad. At high concentrations, the system can be driven beyond the saturation boundary such that cluster size is limited only by the number of available molecules. This behavior would be predictive of phase separation. Domains close to binding sites sterically inhibited clustering much less than terminal domains because the latter effectively restrict access to the cluster interior. Increased flexibility of interacting molecules diminished clustering by shielding binding sites within compact conformations. Membrane association of nephrin increased the cluster size distribution in a density-dependent manner. These properties provide insights into how molecular ensembles function to localize and amplify cell signaling.


2017 ◽  
Author(s):  
Jana Shen ◽  
Zhi Yue ◽  
Helen Zgurskaya ◽  
Wei Chen

AcrB is the inner-membrane transporter of E. coli AcrAB-TolC tripartite efflux complex, which plays a major role in the intrinsic resistance to clinically important antibiotics. AcrB pumps a wide range of toxic substrates by utilizing the proton gradient between periplasm and cytoplasm. Crystal structures of AcrB revealed three distinct conformational states of the transport cycle, substrate access, binding and extrusion, or loose (L), tight (T) and open (O) states. However, the specific residue(s) responsible for proton binding/release and the mechanism of proton-coupled conformational cycling remain controversial. Here we use the newly developed membrane hybrid-solvent continuous constant pH molecular dynamics technique to explore the protonation states and conformational dynamics of the transmembrane domain of AcrB. Simulations show that both Asp407 and Asp408 are deprotonated in the L/T states, while only Asp408 is protonated in the O state. Remarkably, release of a proton from Asp408 in the O state results in large conformational changes, such as the lateral and vertical movement of transmembrane helices as well as the salt-bridge formation between Asp408 and Lys940 and other sidechain rearrangements among essential residues.Consistent with the crystallographic differences between the O and L protomers, simulations offer dynamic details of how proton release drives the O-to-L transition in AcrB and address the controversy regarding the proton/drug stoichiometry. This work offers a significant step towards characterizing the complete cycle of proton-coupled drug transport in AcrB and further validates the membrane hybrid-solvent CpHMD technique for studies of proton-coupled transmembrane proteins which are currently poorly understood. <p><br></p>


Author(s):  
Balaji Selvam ◽  
Ya-Chi Yu ◽  
Liqing Chen ◽  
Diwakar Shukla

<p>The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane. However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as 1 for the glucose the transport mechanism. SWEETs undergoes structural transition to outward-facing (OF), Occluded (OC) and inward-facing (IF) and strongly support alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly same for OF, OC and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and act as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Raghavendar Reddy Sanganna Gari ◽  
Joel José Montalvo‐Acosta ◽  
George R. Heath ◽  
Yining Jiang ◽  
Xiaolong Gao ◽  
...  

AbstractConformational changes in ion channels lead to gating of an ion-conductive pore. Ion flux has been measured with high temporal resolution by single-channel electrophysiology for decades. However, correlation between functional and conformational dynamics remained difficult, lacking experimental techniques to monitor sub-millisecond conformational changes. Here, we use the outer membrane protein G (OmpG) as a model system where loop-6 opens and closes the β-barrel pore like a lid in a pH-dependent manner. Functionally, single-channel electrophysiology shows that while closed states are favored at acidic pH and open states are favored at physiological pH, both states coexist and rapidly interchange in all conditions. Using HS-AFM height spectroscopy (HS-AFM-HS), we monitor sub-millisecond loop-6 conformational dynamics, and compare them to the functional dynamics from single-channel recordings, while MD simulations provide atomistic details and energy landscapes of the pH-dependent loop-6 fluctuations. HS-AFM-HS offers new opportunities to analyze conformational dynamics at timescales of domain and loop fluctuations.


Sign in / Sign up

Export Citation Format

Share Document