Light and dark control of the cell cycle in two marine phytoplankton species

1986 ◽  
Vol 167 (1) ◽  
pp. 38-52 ◽  
Author(s):  
D. Vaulot ◽  
R.J. Olson ◽  
S.W. Chisholm
1986 ◽  
Vol 80 (4) ◽  
pp. 918-925 ◽  
Author(s):  
Robert J. Olson ◽  
Daniel Vaulot ◽  
Sallie W. Chisholm

Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 9
Author(s):  
Ya-Ping Liu ◽  
Sheng-Tao Fang ◽  
Zhen-Zhen Shi ◽  
Bin-Gui Wang ◽  
Xiao-Nian Li ◽  
...  

Three new phenylhydrazones, penoxahydrazones A–C (compounds 1–3), and two new quinazolines, penoxazolones A (compound 4) and B (compound 5), with unique linkages were isolated from the fungus Penicillium oxalicum obtained from the deep sea cold seep. Their structures and relative configurations were assigned by analysis of 1D/2D NMR and mass spectroscopic data, and the absolute configurations of 1, 4, and 5 were established on the basis of X-ray crystallography or ECD calculations. Compound 1 represents the first natural phenylhydrazone-bearing steroid, while compounds 2 and 3 are rarely occurring phenylhydrazone tautomers. Compounds 4 and 5 are enantiomers that feature quinazoline and cinnamic acid units. Some isolates exhibited inhibition of several marine phytoplankton species and marine-derived bacteria.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 252 ◽  
Author(s):  
Yin-Ping Song ◽  
Feng-Ping Miao ◽  
Xiang-Hong Liu ◽  
Xiu-Li Yin ◽  
Nai-Yun Ji

Seven previously unreported cyclonerane derivatives, namely, 3,7,11-trihydroxycycloneran-10-one, cycloneran-3,7,10,11-tetraol, cycloneran-3,7,11-triol, 11,12,15-trinorcycloneran-3,7,10-triol, 7,10S-epoxycycloneran-3,15-diol, 7,10R-epoxycycloneran-3,15-diol, and (10Z)-15-acetoxy-10-cycloneren-3,7-diol, were isolated in addition to the known (10Z)-cyclonerotriol, (10E)-cyclonerotriol, catenioblin C, and chokol E from the culture of Trichoderma asperellum A-YMD-9-2, an endophytic fungus obtained from the marine red alga Gracilaria verrucosa. The structures of previously unreported compounds were established by spectroscopic techniques, including 1D/2D NMR, MS, and IR. The isolation of these new cyclonerane derivatives greatly adds to the structural diversity of unusual cyclonerane sesquiterpenes, and several isolates exhibit potent inhibition against some marine phytoplankton species.


2016 ◽  
Vol 9 (9) ◽  
pp. 1156-1164 ◽  
Author(s):  
Luisa Listmann ◽  
Maxime LeRoch ◽  
Lothar Schlüter ◽  
Mridul K. Thomas ◽  
Thorsten B. H. Reusch

2019 ◽  
Vol 5 (5) ◽  
pp. eaau6253 ◽  
Author(s):  
Damiano Righetti ◽  
Meike Vogt ◽  
Nicolas Gruber ◽  
Achilleas Psomas ◽  
Niklaus E. Zimmermann

Despite their importance to ocean productivity, global patterns of marine phytoplankton diversity remain poorly characterized. Although temperature is considered a key driver of general marine biodiversity, its specific role in phytoplankton diversity has remained unclear. We determined monthly phytoplankton species richness by using niche modeling and >540,000 global phytoplankton observations to predict biogeographic patterns of 536 phytoplankton species. Consistent with metabolic theory, phytoplankton richness in the tropics is about three times that in higher latitudes, with temperature being the most important driver. However, below 19°C, richness is lower than expected, with ~8°– 14°C waters (~35° to 60° latitude) showing the greatest divergence from theoretical predictions. Regions of reduced richness are characterized by maximal species turnover and environmental variability, suggesting that the latter reduces species richness directly, or through enhancing competitive exclusion. The nonmonotonic relationship between phytoplankton richness and temperature suggests unanticipated complexity in responses of marine biodiversity to ocean warming.


Author(s):  
J. P. Riley ◽  
D. A. Segar

Thin-layer chromatography on plates coated with silica gel and with sucroseglucose (1:1) has been used in the study of the pigments of twenty species of marine phytoplankton from four phyla. A number of apparently new xanthophylls have been found, including a fucoxanthin-like pigment which is the major xanthophyll in an unidentified coccoid alga (Plymouth no. 407).


Sign in / Sign up

Export Citation Format

Share Document