carbon limitation
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 54)

H-INDEX

47
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Camille Godbillot ◽  
Fabrice Minoletti ◽  
Franck Bassinot ◽  
Michaël Hermoso

Abstract. Beyond the pCO2 records provided by ice core measurements, the quantification of atmospheric CO2 concentrations and changes thereof relies on proxy data, the development of which represents a foremost challenge in paleoceanography. In the paleoceanographic toolbox, the coccolithophores occupy a notable place, as the magnitude of the carbon isotopic fractionation between ambient CO2 and a type of organic compounds that these photosynthetic microalgae synthesize (the alkenones) represents a relatively robust proxy to reconstruct past atmospheric CO2 concentrations during the Cenozoic. The isotopic composition of coeval calcite biominerals found in the sediments and also produced by the coccolithophores (the coccoliths) have been found to record an ambient CO2 signal through culture and sediment analyses. These studies have, however, not yet formalized a transfer function that quantitatively ties the isotopic composition of coccolith calcite to the concentrations of aqueous CO2, and, ultimately, to atmospheric CO2 levels. Here, we make use of a micro-separation protocol to compare the isotopic response of two size-restricted coccolith assemblages from the North Atlantic to changes in surface ocean CO2 during Termination II (ca. 130–140 ka). Performing paired measurements of the isotopic composition (δ13C and δ18O) of relatively large and small coccoliths provides an isotopic offset that can be designated as a “differential vital effect”. We find that the evolution of this offset follows that of aqueous CO2 concentrations computed from the ice core CO2 curve and an independent temperature signal. We interpret this biogeochemical feature to be the result of converging carbon fixation strategies between large and small cells as the degree of carbon limitation for cellular growth decreases across the deglaciation. We are therefore able to determine a transfer function between the coccolith differential vital effects and aqueous CO2 in the range of Quaternary CO2 concentrations. We here consolidate a new coccolith ∆δ13C proxy that overtakes the strong assumptions that have to be made pertaining to the chemistry of the carbonate system in seawater, as required in CO2 proxy methods such as the boron isotope and alkenone proxies.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 724
Author(s):  
Yi Wang ◽  
Shirong Liu ◽  
Junwei Luan ◽  
Chen Chen ◽  
Chunju Cai ◽  
...  

Impacts of drought events and nitrogen (N) deposition on forests are increasingly concerning in the context of global climate change, but their effects, in particular, their interactive effects on soil respiration and its components remain unclear. A two-factor random block field experiment was conducted at a subtropical Moso bamboo forest in Southwest China to explore the response of soil respiration (Rs), autotrophic respiration (Ra), and heterotrophic respiration (Rh) to throughfall re-duction and N addition. Our results showed that throughfall reduction significantly decreased Rs, which is mainly attributed to the decrease in Ra as a result of the decline in fine roots biomass. The N addition led to microbial carbon limitation hence significantly decreased Rh, and thus Rs. We also observed the negative effect of throughfall reduction on Rs was exacerbated by N addition, which is attributed to the significant reduction in Ra under the interaction between throughfall reduction N addition. Our findings suggest that Ra tended to respond more sensitively to potential drought, while Rh responds more sensitively to N deposition, and consequently, increased soil N availability caused by N deposition might aggravate the negative effect of expected drought on soil carbon cycling.


2021 ◽  
Author(s):  
Debjani Sihi ◽  
Stefan Gerber

<p class="rolelistitem">Models of soil organic matter (SOM) decomposition are critical for predicting the fate of soil carbon (and nutrient) under changing climate. Traditionally, models have used a simple set-up where the substrate is divided into conceptual pools to represent their resistance to microbial degradation, and decomposition rates are often proportional to the amount of substrate in each pool. Emerging models now consider explicit microbial dynamics and show that SOM loss under warming may be fundamentally different from the classical models. Microbial explicit models use reaction kinetics, represented on a concentration basis. However, when the substrate makes up most of the volume of soils (e.g., the organic horizon in forest soils or peat), an increase or decrease in SOM does not, or only very little, affect concentrations of microbes and substrate. Consequently, reduction in SOM does not reduce the amount of substrate the microbial biomass encounters. This problem does not occur in classical models like CENTURY. We incorporated the effect of organic matter on soil volume in several microbial models. If microbes are solely limited by enzymes, organic soils or peats are decomposed very quickly as there is no mechanism that stops the positive feedback between microbial growth and SOM concentration until the substrate is gone. Alternative formulations that account for carbon limitation or microbial ‘cannibalism’ display a sweet spot of soil carbon concentration. Interestingly, a response to warming will depend on the amount of organic vs. mineral materials. Apparent Q<sub>10</sub> was higher in fully organic soil than in mineral soils, which was pronounced when small to moderate amounts of the mineral matter was present that diluted the substrate for microbes. We suggest that model formulations need to be clear about the assumption in key processes, as each of the steps in the cascade of biogeochemical reaction can produce surprising results.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Sophie Rabouille ◽  
Douglas A. Campbell ◽  
Takako Masuda ◽  
Tomáš Zavřel ◽  
Gábor Bernát ◽  
...  

Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicholas C. Dove ◽  
Margaret S. Torn ◽  
Stephen C. Hart ◽  
Neslihan Taş

AbstractIncreasing global temperatures are predicted to stimulate soil microbial respiration. The direct and indirect impacts of warming on soil microbes, nevertheless, remain unclear. This is particularly true for understudied subsoil microbes. Here, we show that 4.5 years of whole-profile soil warming in a temperate mixed forest results in altered microbial community composition and metabolism in surface soils, partly due to carbon limitation. However, microbial communities in the subsoil responded differently to warming than in the surface. Throughout the soil profile—but to a greater extent in the subsoil—physiologic and genomic measurements show that phylogenetically different microbes could utilize complex organic compounds, dampening the effect of altered resource availability induced by warming. We find subsoil microbes had 20% lower carbon use efficiencies and 47% lower growth rates compared to surface soils, which constrain microbial communities. Collectively, our results show that unlike in surface soils, elevated microbial respiration in subsoils may continue without microbial community change in the near-term.


Sign in / Sign up

Export Citation Format

Share Document