Compound action potentials of cat optic nerve produced by stimulation of optic tracts and of optic nerve

1967 ◽  
Vol 19 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Rainer Spehlmann
1983 ◽  
Vol 61 (10) ◽  
pp. 1149-1155 ◽  
Author(s):  
J. A. Armour

Afferent stimulation of one thoracic cardiopulmonary nerve generated compound action potentials in the efferent axons of other ipsilateral cardiopulmonary nerves in dogs, 14 days after their thoracic autonomic ganglia had been decentralized. The compound action potentials were influenced by the frequency of activation and (in 5 of 12 dogs) by pharmacological autonomic blocking agents (hexamethonium, atropine, phentolamine, and propranolol). Moreover, they were abolished transiently when chymotrypsin was injected locally into the ganglia, and extendedly when manganese was injected. Thus, synapses that can be activated by stimulation of afferent nerves exist in chronically decentralized thoracic autonomic nerves and ganglia. It is proposed that regulation of the heart and lungs occurs in part via thoracic autonomic neural elements independent of the central nervous system.


1995 ◽  
Vol 132 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Miho Sugioka ◽  
Hajime Sawai ◽  
Eijiro Adachi ◽  
Yutaka Fukuda

1982 ◽  
Vol 99 (1) ◽  
pp. 381-395
Author(s):  
JON W. JACKLET ◽  
CELINE ROLERSON

1. Photoreceptors of the eye of Aplysia were studied by intracellular recording and Lucifer yellow injection. 2. Two basic photoreceptor types were observed, R and H. Two other types of cells were occasionally encountered: one was neurone-like, giving only a slight depolarization but large action potentials (APs) in response to light; the other was presumably glial. 3. Type R photoreceptors were found in the pigmented layer of the retina, had large distal (photoreceptor) processes extending toward the lens and an axon in the optic nerve. They are probably the large, microvillous receptor type with vesicle-filled cytoplasm observed previously in electron microscope studies. Action potentials were observed in the axon but not the cell body of the R receptor. The light response was an increasing conductance, 2 component depolarization followed by hyperpolarization. All 3 components were affected by light adaptation. Electrical coupling between R receptors and secondary neurones was apparent and the system produces the synchronous compound action potentials (CAPs) in the optic nerve. 4. Type H photoreceptors gave a slight depolarization to light with APs, followed by a hyperpolarization, followed by a late depolarization and more APs. They were in the pigmented layer of the retina and had smaller cell bodies and distal processes, but larger axons than R receptors. They may correspond to the photoreceptors with short microvilli and occasional cilia described previously in electron microscope studies. Electrical and dye coupling occurred between the receptors. The H receptors do not contribute to the CAP, but produce separate unitary potentials in the optic nerve.


eNeuro ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. ENEURO.0051-17.2017 ◽  
Author(s):  
Mercè Cases ◽  
Artur Llobet ◽  
Beatrice Terni ◽  
Inmaculada Gómez de Aranda ◽  
Marta Blanch ◽  
...  

1983 ◽  
Vol 61 (8) ◽  
pp. 793-801 ◽  
Author(s):  
J. A. Armour

Afferent stimulation of one canine thoracic cardiopulmonary nerve can generate compound action potentials in another ipsilateral cardiopulmonary nerve. These compound action potentials persist after acute decentralization of the middle cervical ganglion, indicating that they result from neural activity in the middle cervical ganglion and thoracic nerves. Changing the frequency of stimulation can alter the compound action potentials, suggesting that temporal facilitation or inhibition occurs in this middle cervical ganglion preparation. The compound action potentials can be modified by stimulation of sympathetic preganglionic fibers and by hexamethonium, atropine, phentolamine, propranolol, and (or) manganese. It thus appears that afferent cardiopulmonary nerves can activate efferent cardiopulmonary nerves via synaptic mechanisms in the stellate and middle cervical ganglia. It also appears that these mechanisms involve adrenergic and cholinergic receptors and are influenced by preganglionic sympathetic fibers arising from the cord.


2000 ◽  
Vol 5 (4) ◽  
pp. 227-235 ◽  
Author(s):  
Sidney Ochs ◽  
Rahman Pourmand ◽  
Kenan Si ◽  
Richard N. Friedman

2009 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Stefan Brill ◽  
Joachim Müller ◽  
Rudolf Hagen ◽  
Alexander Möltner ◽  
Steffi-Johanna Brockmeier ◽  
...  

2010 ◽  
Vol 31 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Isaac Alvarez ◽  
Angel de la Torre ◽  
Manuel Sainz ◽  
Cristina Roldán ◽  
Hansjoerg Schoesser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document