scholarly journals Selective inhibition by zinc of RNA synthesis initiation in the RNA polymerase I reaction

FEBS Letters ◽  
1979 ◽  
Vol 99 (1) ◽  
pp. 29-32 ◽  
Author(s):  
Yoshikuni Nagamine ◽  
Den'ichi Mizuno ◽  
Shunji Natori
2010 ◽  
Vol 71 (4) ◽  
pp. 1418-1430 ◽  
Author(s):  
Denis Drygin ◽  
Amy Lin ◽  
Josh Bliesath ◽  
Caroline B. Ho ◽  
Sean E. O'Brien ◽  
...  

2017 ◽  
Vol 11 (3) ◽  
pp. e0005432 ◽  
Author(s):  
Louise E. Kerry ◽  
Elaine E. Pegg ◽  
Donald P. Cameron ◽  
James Budzak ◽  
Gretchen Poortinga ◽  
...  

1990 ◽  
Vol 10 (5) ◽  
pp. 2049-2059 ◽  
Author(s):  
M Wittekind ◽  
J M Kolb ◽  
J Dodd ◽  
M Yamagishi ◽  
S Mémet ◽  
...  

The synthesis of ribosomal proteins (r proteins) under the conditions of greatly reduced RNA synthesis were studied by using a strain of the yeast Saccharomyces cerevisiae in which the production of the largest subunit (RPA190) of RNA polymerase I was controlled by the galactose promoter. Although growth on galactose medium was normal, the strain was unable to sustain growth when shifted to glucose medium. This growth defect was shown to be due to a preferential decrease in RNA synthesis caused by deprivation of RNA polymerase I. Under these conditions, the accumulation of r proteins decreased to match the rRNA synthesis rate. When proteins were pulse-labeled for short periods, no or only a weak decrease was observed in the differential synthesis rate of several r proteins (L5, L39, L29 and/or L28, L27 and/or S21) relative to those of control cells synthesizing RPA190 from the normal promoter. Degradation of these r proteins synthesized in excess was observed during subsequent chase periods. Analysis of the amounts of mRNAs for L3 and L29 and their locations in polysomes also suggested that the synthesis of these proteins relative to other cellular proteins were comparable to those observed in control cells. However, Northern analysis of several r-protein mRNAs revealed that the unspliced precursor mRNA for r-protein L32 accumulated when rRNA synthesis rates were decreased. This result supports the feedback regulation model in which excess L32 protein inhibits the splicing of its own precursor mRNA, as proposed by previous workers (M. D. Dabeva, M. A. Post-Beittenmiller, and J. R. Warner, Proc. Natl. Acad. Sci. USA 83:5854-5857, 1986).


The activities of the three DNA-dependent RNA polymerases from a rapidly growing rat tumour, Morris hepatoma 3924 A, and from rat liver were examined. The activity of RNA polymerase I was higher in the tumour than in the liver. The enhanced capacity for RNA synthesis was a result of a higher concentration of polymerase I in the tumour as well as of an activation of this enzyme vivo. The possibility that the high specific activity of the hepatoma polymerase I resulted from phosphorylation was investigated. Two major cyclic-AMP-independent nuclear casein kinases (NI and N il) were identified; the activity of protein kinase N il in the tumour was ten times that in liver. Protein kinase N il was capable of activating and phosphorylating RNA polymerase I in vitro . This kinase could also stimulate RNA polymerase II activity, although to a lesser extent than RNA polymerase I. RNA polymerase III was not affected by protein kinase NIL Protein kinase N il was tightly associated with polymerase I and was found even in purified preparations of the polymerase. Antibodies against both RNA polymerase I and protein kinase N il were present in sera of patients with certain rheumatic autoimmune diseases. These results imply that RNA polymerase I and protein kinase NIl are in close association in vivo as well as in vitro and that polymerase phosphorylation may regulate the rate of ribosomal RNA synthesis in the cell.


1980 ◽  
Vol 188 (2) ◽  
pp. 381-385 ◽  
Author(s):  
F L Yu

When isolated rat liver nuclei and nucleoli are compared for RNA synthesis in vitro, the rate of nucleolar RNA synthesis is found to be more than 10 times higher. In order to understand this high rate of nucleolar transcription, DNA from both nuclear and nucleolar fractions was isolated and compared for the ability to direct RNA synthesis with homologous RNA polymerases. No difference between these two templates is evident. On the other hand, when the total nuclear and nucleolar RNA polymerases are isolated and compared on a per-unit-weight-of-DNA basis, it becomes clear that the nucleolus has a 10-fold higher RNA polymerase concentration than the nucleus. This result suggests that RNA polymerase I concentration rather than the nucleolar DNA template efficiency is responsible for the observed high rate of nucleolar transcription under the normal steady-state condition.


Sign in / Sign up

Export Citation Format

Share Document