Proton-motive-force-driven sucrose uptake in sugar beet plasma membrane vesicles

FEBS Letters ◽  
1989 ◽  
Vol 249 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Rémi Lemoine ◽  
Serge Delrot
1997 ◽  
Vol 321 (2) ◽  
pp. 487-495 ◽  
Author(s):  
Peter J. A. van den BROEK ◽  
Angeline E. van GOMPEL ◽  
Marijke A. H. LUTTIK ◽  
Jack T. PRONK ◽  
Carla C. M. van LEEUWEN

Transport of glucose and maltose was studied in plasma-membrane vesicles from Candida utilis. The yeast was grown on a mixture of glucose and maltose in aerobic carbon-limited continuous cultures which enabled transport to be studied for both sugars with the same vesicles. Vesicles were prepared by fusion of isolated plasma membranes with proteoliposomes containing bovine heart cytochrome coxidase as a proton-motive-force-generating system. Addition of reduced cytochrome cgenerated a proton-motive force, consisting of a membrane potential, negative inside, and a pH gradient, alkaline inside. Energization led to accumulation of glucose and maltose in these vesicles, reaching accumulation ratios of about 40Ő50. Accumulation also occurred in the presence of valinomycin or nigericin, but was prevented by a combination of the two ionophores or by uncoupler, showing that glucose and maltose transport are dependent on the proton-motive force. Comparison of sugar accumulation with quantitative data on the proton-motive force indicated a 1:1 H+/sugar stoichiometry for both transport systems. Efflux of accumulated glucose was observed on dissipation of the proton-motive force. Exchange and counterflow experiments confirmed the reversible character of the H+Őglucose symporter. In contrast, uncoupler or a mixture of valinomycin plus nigericin induced only a slow efflux of accumulated maltose. Moreover under counterflow conditions, the expected transient accumulation was small. Thus the H+Őmaltose symporter has some characteristics of a carrier that is not readily reversible. It is concluded that in C. utilisthe transport systems for glucose and maltose are both driven by the proton-motive force, but the mechanisms are different.


1992 ◽  
Vol 284 (2) ◽  
pp. 441-445 ◽  
Author(s):  
C C M Van Leeuwen ◽  
R A Weusthuis ◽  
E Postma ◽  
P J A Van den Broek ◽  
J P Van Dijken

Maltose/proton co-transport was studied in intact cells and in plasma membrane vesicles of the yeast Saccharomyces cerevisiae. In order to determine uphill transport in vesicles, plasma membranes were fused with proteoliposomes containing cytochrome c oxidase as a proton-motive force-generating system. Maltose accumulation, dependent on the electrical and pH gradients, was observed. The initial uptake velocity and accumulation ratio in vesicles proved to be dependent on the external pH. Moreover, kinetic analysis of maltose transport showed that Vmax. values greatly decreased with increasing pH, whereas the Km remained virtually constant. These observations were in good agreement with results obtained with intact cells, and suggest that proton binding to the carrier proceeds with an apparent pK of 5.7. The observation with intact cells that maltose is co-transported with protons in a one-to-one stoichiometry was ascertained in the vesicle system by measuring the balance between proton-motive force and the chemical maltose gradient. These results show that maltose transport in vesicles prepared by fusion of plasma membranes with cytochrome c oxidase proteoliposomes behaves in a similar way as in intact cells. It is therefore concluded that this vesicle model system offers a wide range of new possibilities for the study of maltose/proton co-transport in more detail.


Sign in / Sign up

Export Citation Format

Share Document