kluyveromyces marxianus
Recently Published Documents


TOTAL DOCUMENTS

830
(FIVE YEARS 183)

H-INDEX

47
(FIVE YEARS 8)

Author(s):  
Li Wu ◽  
Yilin Lyu ◽  
Pingping Wu ◽  
Tongyu Luo ◽  
Junyuan Zeng ◽  
...  

Kluyveromyces marxianus is the fastest-growing eukaryote and a promising host for producing bioethanol and heterologous proteins. To perform a laboratory evolution of thermal tolerance in K. marxianus, diploid, triploid and tetraploid strains were constructed, respectively. Considering the genetic diversity caused by genetic recombination in meiosis, we established an iterative cycle of “diploid/polyploid - meiosis - selection of spores at high temperature” to screen thermotolerant strains. Results showed that the evolution of thermal tolerance in diploid strain was more efficient than that in triploid and tetraploid strains. The thermal tolerance of the progenies of diploid and triploid strains after a two-round screen was significantly improved than that after a one-round screen, while the thermal tolerance of the progenies after the one-round screen was better than that of the initial strain. After a two-round screen, the maximum tolerable temperature of Dip2-8, a progeny of diploid strain, was 3°C higher than that of the original strain. Whole-genome sequencing revealed nonsense mutations of PSR1 and PDE2 in the thermotolerant progenies. Deletion of either PSR1 or PDE2 in the original strain improved thermotolerance and two deletions displayed additive effects, suggesting PSR1 and PDE2 negatively regulated the thermotolerance of K. marxianus in parallel pathways. Therefore, the iterative cycle of “meiosis - spore screening” developed in this study provides an efficient way to perform the laboratory evolution of heat resistance in yeast.


2022 ◽  
Vol 112 ◽  
pp. 71-79
Author(s):  
Sivanesh Nanjan Easwaran ◽  
Anusha Subramanian Mohanakrishnan ◽  
Leelaram Santharam ◽  
Saravana Raj Adimoolam ◽  
Surianarayanan Mahadevan

Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1443
Author(s):  
Deqiang Yang ◽  
Lixia Zhang ◽  
Jinkun Duan ◽  
Qiang Huang ◽  
Yao Yu ◽  
...  

Infectious bursal disease (IBD), caused by the infectious bursal disease virus (IBDV), is a highly contagious and immunosuppressive disease in chickens worldwide. The novel variant IBDV (nvIBDV) has been emerging in Chinese chicken farms since 2017, but there are no available vaccines that can provide effective protection. Herein, the capsid protein VP2 from nvIBDV strain FJ-18 was expressed in Kluyveromyces marxianus with the aim to produce nvIBDV subviral particles (SVPs). Two recombinant strains constructed for expression of nvIBDV VP2 (nvVP2) and His-tagged VP2 (nvHVP2) formed two types of nvIBDV subviral particles (SVPs), namely nvVP2-SVPs and nvHVP2-SVPs. TEM scans showed that both SVPs were about 25 nm in diameter, but there was a large portion of nvVP2-SVPs showing non-spherical particles. Molecular dynamics simulations indicate that an N-terminal His tag strengthened the interaction of the nvHVP2 monomer and contributed to the assembly of SVPs. Vaccination of chicks with the nvHVP2-SVPs provided 100% protection against novel variant IBDV infection when challenged with the FJ-18 strain, as well as the classical strain BC6/85. By contrast, vaccination with the nvVP2-SVPs only provided 60% protection against their parent FJ-18 strain, suggesting that the stable conformation of subviral particles posed a great impact on their protective efficacy. Our results showed that the nvHVP2-SVPs produced by the recombinant K. marxianus strain is an ideal vaccine candidate for IBDV eradication.


2021 ◽  
Vol 7 (12) ◽  
pp. 1047
Author(s):  
Marlene Baptista ◽  
Joana T. Cunha ◽  
Lucília Domingues

The establishment of lignocellulosic biorefineries is dependent on microorganisms being able to cope with the stressful conditions resulting from the release of inhibitory compounds during biomass processing. The yeast Kluyveromyces marxianus has been explored as an alternative microbial factory due to its thermotolerance and ability to natively metabolize xylose. The lignocellulose-derived inhibitors furfural and 5-hydroxymethylfurfural (HMF) are considered promising building-block platforms that can be converted into a wide variety of high-value derivatives. Here, several K. marxianus strains, isolated from cocoa fermentation, were evaluated for xylose consumption and tolerance towards acetic acid, furfural, and HMF. The potential of this yeast to reduce furfural and HMF at high inhibitory loads was disclosed and characterized. Our results associated HMF reduction with NADPH while furfural-reducing activity was higher with NADH. In addition, furans’ inhibitory effect was higher when combined with xylose consumption. The furan derivatives produced by K. marxianus in different conditions were identified. Furthermore, one selected isolate was efficiently used as a whole-cell biocatalyst to convert furfural and HMF into their derivatives, furfuryl alcohol and 2,5-bis(hydroxymethyl)furan (BHMF), with high yields and productivities. These results validate K. marxianus as a promising microbial platform in lignocellulosic biorefineries.


2021 ◽  
Vol 19 (suplemento) ◽  
Author(s):  
D Eluk

Whey is a by-product of cheese making and represents a danger of environmental contamination when discarded without prior treatment. However, due to its high content of lactose, vitamins and proteins, whey should not be considered a waste, but rather a raw material for obtaining value-added products. Among the alternatives for its use, biomass production stands out through fermentation with Kluyveromyces marxianus. Therefore, this work determines the best operating conditions for biomass production, minimizing residual lactose. To this end, a Doehlert Experimental Matrix Design was used to optimize the effects of aeration and nitrogen source concentration on the growth of K. marxianus by a minimum number of experiments. The results obtained allow maximizing the biomass production, the consumption of lactose and protein by K. marxianus, thus achieving a more effective treatment of whey prior to its discard.  


2021 ◽  
Vol 19 (suplemento) ◽  
Author(s):  
G A Gómez

Milk whey has a high content of organic matter; therefore, uncontrolled discharge can cause environmental problems. An alternative for whey utilization is the production of fermented alcoholic beverages by means of the yeast Kluyveromyces marxianus, able to use lactose as a carbon source. Four different liquid growth media were prepared: whey powder (SP) and demineralized whey powder (SPD) (65 g/L) dissolved in sterilized distilled water; SPCal, similar to SP in composition, but sterilized and centrifuged to remove proteins, and milk permeate (PER). All media were fermented by 24 hours at 30°C. Samples were taken every 8 hours, for pH, biomass, ethanol and lactose determination. K. marxianus (LFIQK1 strain) growth was similar in SP, SPD and SP Cal (biomass between 2 – 3 g/L) and lower in PER. Moderate pH decline was observed, final values being between 4,7 and 5,4. Significant lactose consumption was observed in every growth media, with final values around 12 g/L and good ethanol production, especially for SP, SPD, and PER mediums (17,0±0,7; 17,6±0,5; 16,3±0,2 g/L respectively). These results are encouraging for the production of alcoholic beverages from the studied media using K. marxianus as the fermentation agent.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tianfang Shi ◽  
Jungang Zhou ◽  
Aijuan Xue ◽  
Hong Lu ◽  
Yungang He ◽  
...  

Abstract Background Kluyveromyces marxianus is a promising cell factory for producing bioethanol and that raised a demand for a high yield of heterologous proteins in this species. Expressions of heterologous proteins usually lead to the accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER) and then cause ER stress. To cope with this problem, a group of ER stress response target genes (ESRTs) are induced, mainly through a signaling network called unfolded protein response (UPR). Characterization and modulation of ESRTs direct the optimization of heterologous expressions. However, ESRTs in K. marxianus have not been identified so far. Results In this study, we characterized the ER stress response in K. marxianus for the first time, by using two ER stress-inducing reagents, dithiothreitol (DTT) and tunicamycin (TM). Results showed that the Kar2–Ire1–Hac1 pathway of UPR is well conserved in K. marxianus. About 15% and 6% of genes were upregulated during treatment of DTT and TM, respectively. A total of 115 upregulated genes were characterized as ESRTs, among which 97 genes were identified as UPR target genes and 37 UPR target genes contained UPR elements in their promoters. Genes related to carbohydrate metabolic process and actin filament organization were identified as new types of UPR target genes. A total of 102 ESRTs were overexpressed separately in plasmids and their effects on productions of two different lignocellulolytic enzymes were systematically evaluated. Overexpressing genes involved in carbohydrate metabolism, including PDC1, PGK and VID28, overexpressing a chaperone gene CAJ1 or overexpressing a reductase gene MET13 substantially improved secretion expressions of heterologous proteins. Meanwhile, overexpressing a novel gene, KLMA_50479 (named ESR1), as well as overexpressing genes involved in ER-associated protein degradation (ERAD), including HRD3, USA1 andYET3, reduced the secretory expressions. ESR1 and the aforementioned ERAD genes were deleted from the genome. Resultant mutants, except the yet3Δ mutant, substantially improved secretions of three different heterologous proteins. During the fed-batch fermentation, extracellular activities of an endoxylanase and a glucanase in hrd3Δ cells improved by 43% and 28%, respectively, compared to those in wild-type cells. Conclusions Our results unveil the transcriptional scope of the ER stress response in K. marxianus and suggest efficient ways to improve productions of heterologous proteins by manipulating expressions of ESRTs.


Sign in / Sign up

Export Citation Format

Share Document