The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments

1984 ◽  
Vol 48 (12) ◽  
pp. 2503-2516 ◽  
Author(s):  
Bernard P. Boudreau ◽  
Joseph T. Westrich
2020 ◽  
Vol 8 (4) ◽  
pp. 606
Author(s):  
Derya Ozuolmez ◽  
Elisha K. Moore ◽  
Ellen C. Hopmans ◽  
Jaap S. Sinninghe Damsté ◽  
Alfons J. M. Stams ◽  
...  

The conventional perception that the zone of sulfate reduction and methanogenesis are separated in high- and low-sulfate-containing marine sediments has recently been changed by studies demonstrating their co-occurrence in sediments. The presence of methanogens was linked to the presence of substrates that are not used by sulfate reducers. In the current study, we hypothesized that both groups can co-exist, consuming common substrates (H2 and/or acetate) in sediments. We enriched butyrate-degrading communities in sediment slurries originating from the sulfate, sulfate–methane transition, and methane zone of Aarhus Bay, Denmark. Sulfate was added at different concentrations (0, 3, 20 mM), and the slurries were incubated at 10 °C and 25 °C. During butyrate conversion, sulfate reduction and methanogenesis occurred simultaneously. The syntrophic butyrate degrader Syntrophomonas was enriched both in sulfate-amended and in sulfate-free slurries, indicating the occurrence of syntrophic conversions at both conditions. Archaeal community analysis revealed a dominance of Methanomicrobiaceae. The acetoclastic Methanosaetaceae reached high relative abundance in the absence of sulfate, while presence of acetoclastic Methanosarcinaceae was independent of the sulfate concentration, temperature, and the initial zone of the sediment. This study shows that there is no vertical separation of sulfate reducers, syntrophs, and methanogens in the sediment and that they all participate in the conversion of butyrate.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 513-520 ◽  
Author(s):  
O. Mizuno ◽  
H. Takagi ◽  
T. Noike

The biological sulfate removal in the acidogenic bioreactor with an ultrafiltration membrane system was investigated at 35°C. Sucrose was used as the sole organic substrate. The sulfate concentration in the substrate ranged from 0 to 600mgS·1−1. The chemostat reactor was operated to compare with the membrane bioreactor. The fouling phenomenon caused by FeS precipitate was observed at higher concentration of sulfate. However, it was possible to continuously operate the membrane bioreactor by cleaning the membrane. The efficiency of sulfate removal by sulfate reduction reached about 100% in the membrane bioreactor, and 55 to 87% of sulfide was removed from the permeate by the membrane filtration. The composition of the metabolite was remarkably changed by the change in sulfate concentration. When the sulfate concentration increased, acetate and 2-proponol significantly increased while n-butyrate and 3-pentanol decreased. The sulfate-reducing bacteria play the role as acetogenic bacteria consuming volatile fatty acids and alcohols as electron donors under sulfate-rich conditions. The results show that the acidogenesis and sulfate reduction simultaneously proceed in the membrane bioreactor.


Sign in / Sign up

Export Citation Format

Share Document