Turbulence intensity and time-mean velocity distributions in low reynolds number turbulent pipe flows

1972 ◽  
Vol 15 (5) ◽  
pp. 1067-1074 ◽  
Author(s):  
W.T Pennell ◽  
E.M Sparrow ◽  
E.R.G Eckert
2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Paul Ziadé ◽  
Mark A. Feero ◽  
Philippe Lavoie ◽  
Pierre E. Sullivan

The shear layer development for a NACA 0025 airfoil at a low Reynolds number was investigated experimentally and numerically using large eddy simulation (LES). Two angles of attack (AOAs) were considered: 5 deg and 12 deg. Experiments and numerics confirm that two flow regimes are present. The first regime, present for an angle-of-attack of 5 deg, exhibits boundary layer reattachment with formation of a laminar separation bubble. The second regime consists of boundary layer separation without reattachment. Linear stability analysis (LSA) of mean velocity profiles is shown to provide adequate agreement between measured and computed growth rates. The stability equations exhibit significant sensitivity to variations in the base flow. This highlights that caution must be applied when experimental or computational uncertainties are present, particularly when performing comparisons. LSA suggests that the first regime is characterized by high frequency instabilities with low spatial growth, whereas the second regime experiences low frequency instabilities with more rapid growth. Spectral analysis confirms the dominance of a central frequency in the laminar separation region of the shear layer, and the importance of nonlinear interactions with harmonics in the transition process.


2012 ◽  
Vol 702 ◽  
pp. 286-297 ◽  
Author(s):  
S. Wang ◽  
A. M. Ardekani

AbstractSmall planktonic organisms ubiquitously display unsteady or impulsive motion to attack a prey or escape a predator in natural environments. Despite this, the role of unsteady forces such as history and added mass forces on the low-Reynolds-number propulsion of small organisms, e.g. Paramecium, is poorly understood. In this paper, we derive the fundamental equation of motion for an organism swimming by means of the surface distortion in a non-uniform background flow field at a low-Reynolds-number regime. We show that the history and added mass forces are important as the product of Reynolds number and Strouhal number increases above unity. Our results for an unsteady squirmer show that unsteady inertial effects can lead to a non-zero mean velocity for the cases with zero streaming parameters, which have zero mean velocity in the absence of inertia.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
G. F. K. Tay ◽  
D. C. S. Kuhn ◽  
M. F. Tachie

This paper reports an experimental investigation of the effects of wall roughness and favorable pressure gradient on low Reynolds number turbulent flow in a two-dimensional asymmetric converging channel. Flow convergence was produced by means of ramps (of angles 2 deg and 3 deg) installed on the bottom wall of a plane channel. The experiments were conducted over a smooth surface and over transitionally rough and fully rough surfaces produced from sand grains and gravel of nominal mean diameters 1.55 mm and 4.22 mm, respectively. The dimensionless acceleration parameter was varied from 0.38×10−6 to 3.93×10−6 while the Reynolds number based on the boundary layer momentum thickness was varied from 290 to 2250. The velocity measurements were made using a particle image velocimetry technique. From these measurements, the distributions of the mean velocity and Reynolds stresses were obtained to document the salient features of transitionally and fully rough low Reynolds number turbulent boundary layers subjected to favorable pressure gradient.


Author(s):  
Ebenezer E. Essel ◽  
Kathryn Atamanchuk ◽  
Samuel d’Auteuil ◽  
Mark F. Tachie

An experimental study was conducted to investigate low Reynolds number effects on open channel flow over a transverse square rib. Particle image velocimetry technique was used to perform detailed velocity measurement in the upstream and recirculation region of a square rib of height, h = 12 mm. The Reynolds number based on the freestream velocity and rib height, Reh = 1510, 2650 and 3950 and the ratio of the boundary layer thickness to step height, δ/h = 2.5 ± 0.2. The results showed that the reattachment length of Reh = 2650 and 3950 increased by 5.7% compared with corresponding value of Reh = 1510. The mean velocities were independent of Reynolds number in the recirculation region but at the reattachment point, Reh = 3650 reduced the streamwise mean velocity and enhanced the wall-normal mean velocity in the region adjacent to the wall. The turbulent kinetic energy beyond the center of the recirculation region increased with increasing Reynolds number.


Author(s):  
Alberto Di Sante ◽  
Rene´ Van den Braembussche

The impact of Coriolis forces on low Reynolds number decelerating flows is studied by means of time resolved Particle Image Velocimetry in a 6° diverging channel. Measurements are made with a high speed camera and a continuous light source rotating at the same speed as the rotating channel. This allows a direct and accurate recording of the time varying relative velocity. The Reynolds number can be varied from 3 000 to 30 000 in combination with a change of rotation number between 0.0 and 0.33. These values are characteristic for the flow in the blade passage of centrifugal impellers used in micro gasturbines. Increasing rotation stabilizes the flow on the suction side. The peak turbulence intensity shifts away from the wall with a small increase of its amplitude. The turbulence intensity on the pressure side increases its peak value and concentrates closer to the wall when increasing rotation. Instantaneous flow field analyses indicate that elongated vortical structures characterize the boundary layer in the stationary case and on the pressure side of the rotating channel. Isotropic vortices develop relatively distant from the wall on the suction side. Their position and size are tracked in time by means of a wavelet analysis.


Author(s):  
Mazharul Islam ◽  
M. Ruhul Amin ◽  
Yasir M. Shariff

Selection of airfoil is crucial for better aerodynamic performance and design of aerodynamic applications such as wind turbine and aircrafts. In this paper, a high-lift and low-Reynolds number airfoil has been selected and investigated through computational analysis for applying it for small-sized wind turbines as blades. The S1223 airfoil, designed by the University of Illinois at Urbana-Champaign, was chosen for its high-lift characteristics at low Reynolds number typically encountered by the small wind turbines. CFD work is performed with S1223 airfoil profile over a wide range of conditions of interest to analyze the performance of the airfoil using the Spalart-Allmaras turbulence model. The results obtained from the simulation works have been compared with experimental data for validation purpose. It has been found that the Spalart-Allmaras model conforms well with the experimental results, though the values of lift coefficients (Cl) are slightly less than the experimental results. In the present analysis, velocity distributions are analyzed at different angle of attacks for different turbulence intensities. It has been observed that there is vortex shedding around the trailing edge of the airfoil for both turbulence levels. It has been observed in the present study that due to increase in turbulence intensity, both the maximum lift coefficient and the stall angle increases significantly. It has been found after investigating the effect of turbulence intensity over lift-to-drag coefficient ratio that it drastically decreases due to increase in turbulence intensity up to certain value (about 3.5%), then it starts decreasing in gradual manner.


Sign in / Sign up

Export Citation Format

Share Document