Steady-state analysis of two-phase natural circulation loop

1988 ◽  
Vol 31 (5) ◽  
pp. 931-940 ◽  
Author(s):  
K.S. Chen ◽  
Y.R. Chang
2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Dipankar N. Basu ◽  
Souvik Bhattacharyya ◽  
P. K. Das

A model to predict the steady-state behavior of a rectangular two-phase natural circulation loop has been proposed. The analysis employs a one-dimensional two-fluid model to identify various system parameters, with particular emphasis on the subcooled boiling region. The onset of two-phase region and point of net vapor generation and associated liquid temperatures and vapor qualities have been estimated using a few widely recognized correlations. Predicted results demonstrate that the consideration of subcooled boiling may have significant effect on system behavior, particularly around the transition regions. The interaction of saturated bubbles and subcooled liquid and associated change in heat transfer and frictional forces has been discussed in detail. Fluid stream has been observed to have different combinations of flow stream conditions at boiler exit and condenser inlet. Five probable combinations have been identified and a generalized working-regime map has been proposed on Nsub−NZu plane. Attempts have been made to identify the influence of various control parameters. A favorable sink condition (higher coolant flow rate or lower coolant entry temperature) has been found to be of particular importance to attain a wider operating range of wall heat flux and better heat transfer characteristics. A design map has been proposed to identify favorable operating condition in terms of control parameters to ensure complete condensation.


Author(s):  
Zheng Huang

Natural circulation is one of the most important mechanisms of passive safety systems in the advanced NPP design. By using RELAP5, steady-state behaviors of a typical natural circulation loop (NCL) were investigated. The Influences of various system parameters, such as pressure, cooling heat transfer area and loop height were studied. The results show that the heat transfer power of the NCL (i.e. the heat transferred from the heater to the tank by NCL) is linear with respect to the temperatures of boundary heat source and sink, excluding the phase transition region. The NCL operation mode (i.e. two-phase flow or one-phase flow) is mainly determined by the loop pressure. It is found that with the decrease of the pressure, the two-phase flow operation range is widened. The heat transfer power of two-phase flow case is always higher, and varies more substantially with pressure, than that of one-phase flow case under the same boundary temperatures. However, flow instability may occur for two-phase flow case. By increasing the area of heat transfer surface between loop cooling section and tank, the temperature difference between the inlet and the outlet of loop heating section as well as the heat transfer power of the NCL will increase. But the influence is insignificant when the tank temperature is relatively high. It is also observed that for both one-phase flow and two-phase flow, the change of loop height has little effect upon the heat transfer power of the NCL under the given boundary condition in this study.


Author(s):  
S Venkata Sai Sudheer ◽  
K Kiran Kumar ◽  
Karthik Balasubramanian

A Numerical investigation on the influence of heater and condenser orientation and its location on steady state performance of a Two Phase Natural Circulation Loop (TPNCL) is presented. In the present study, four possible orientations are considered in TPNCL namely, Vertical Heater and Vertical Condenser (VHVC), Vertical Heater and Horizontal Condenser (VHHC), Horizontal Heater and Horizontal Condenser (HHHC) and Horizontal Heater and Vertical Condenser (HHVC). An in house MATLAB code is developed to solve the systems of equations. Homogeneous equilibrium model (HEM) is used in two phase regions. It is observed that steady state mass flow rate of the loop is significantly influenced by the developed pressure gradient in the riser and downcomer sections, as well as available vapour quality in the riser section. Moreover, it is also noticed that condenser position and orientation significantly effects the thermo-hydraulic characteristic of loop compared with heater orientation.


Author(s):  
Shubhankar Chakraborty ◽  
Prasanta Kr. Das

Natural circulation loop (NCL) transfers thermal energy without using any external power. As with phase change, one can expect a higher rate of heat transfer and a greater change in density, NCL with a phase change of the circulating fluid is a more effective energy transfer device. Though in many of the practical NCLs there are multiple heating risers, the characteristics of NCLs with parallel boiling risers have not been investigated in detail. In the present work, the steady-state behavior of a two-phase NCL with two parallel boiling risers for water as the working fluid has been investigated. Emphasis has been given to the performance of the loop when the risers are differentially heated. Effect of different parameters on the loop circulation rate and energy transport for both equally and differentially heated conditions has been thoroughly examined and compared to the performance of a single-riser loop under equivalent working condition.


Sign in / Sign up

Export Citation Format

Share Document