Myosin light chain phosphorylation in contraction and relaxation of intact rat thoracic aorta

1986 ◽  
Vol 18 (10) ◽  
pp. 917-928 ◽  
Author(s):  
Martin B. Draznin ◽  
Robert M. Rapoport ◽  
Ferid Murad
1991 ◽  
Vol 261 (6) ◽  
pp. G952-G957
Author(s):  
R. J. Washabau ◽  
M. B. Wang ◽  
J. P. Ryan

These experiments were designed to determine 1) whether acetylcholine (ACh) stimulation is accompanied by changes in myosin light chain phosphorylation in gallbladder smooth muscle and 2) whether dephosphorylated noncycling cross bridges (latch bridges) exist in gallbladder smooth muscle. Isometric stress, isotonic shortening velocity, and myosin light chain phosphorylation were determined under conditions of contraction and relaxation in ACh-stimulated guinea pig gallbladder smooth muscle. Unstimulated muscle contained 6.8 +/- 2.0% phosphorylated myosin light chain. ACh stimulation (5 x 10(-5) or 10(-4) M) was associated with a rapid increase in myosin light chain phosphorylation to a value that was maintained throughout the tonic contraction. In contrast, isotonic shortening velocity was maximal at 30 s of stimulation and then declined over time to a steady-state level that was 25-30% of the peak velocity. Upon agonist washout (relaxation), dephosphorylation of the myosin light chain occurred at about the same rate as the decline in shortening velocity and preceded the decline in isometric stress. These data suggest that ACh stimulation is accompanied by changes in myosin light chain phosphorylation but that dephosphorylation of cross bridges is not necessary for the slowing of cross-bridge cycling rates in gallbladder smooth muscle.


2018 ◽  
Vol 22 (4) ◽  
pp. 437
Author(s):  
Byeong Hyeok Ye ◽  
Eun Jung Kim ◽  
Seung Eun Baek ◽  
Young Whan Choi ◽  
So Youn Park ◽  
...  

2018 ◽  
Vol 275 ◽  
pp. e128-e129
Author(s):  
E.J. Kim ◽  
B.H. Ye ◽  
S.E. Baek ◽  
Y.W. Choi ◽  
S.Y. Park ◽  
...  

2018 ◽  
Vol 315 (2) ◽  
pp. H423-H428
Author(s):  
Philip S. Clifford ◽  
Brian S. Ferguson ◽  
Jeffrey L. Jasperse ◽  
Michael A. Hill

It is generally assumed that relaxation of arteriolar vascular smooth muscle occurs through hyperpolarization of the cell membrane, reduction in intracellular Ca2+ concentration, and activation of myosin light chain phosphatase/inactivation of myosin light chain kinase. We hypothesized that vasodilation is related to depolymerization of F-actin. Cremaster muscles were dissected in rats under pentobarbital sodium anesthesia (50 mg/kg). First-order arterioles were dissected, cannulated on glass micropipettes, pressurized, and warmed to 34°C. Internal diameter was monitored with an electronic video caliper. The concentration of G-actin was determined in flash-frozen intact segments of arterioles by ultracentrifugation and Western blot analyses. Arterioles dilated by ~40% of initial diameter in response to pinacidil (1 × 10−6 mM) and sodium nitroprusside (5 × 10−5 mM). The G-actin-to-smooth muscle 22α ratio was 0.67 ± 0.09 in arterioles with myogenic tone and increased significantly to 1.32 ± 0.34 ( P < 0.01) when arterioles were dilated with pinacidil and 1.14 ± 0.18 ( P < 0.01) with sodium nitroprusside, indicating actin depolymerization. Compared with control vessels (49 ± 5%), the percentage of phosphorylated myosin light chain was significantly reduced by pinacidil (24 ± 2%, P < 0.01) but not sodium nitroprusside (42 ± 4%). These findings suggest that actin depolymerization is an important mechanism for vasodilation of resistance arterioles to external agonists. Furthermore, pinacidil produces smooth muscle relaxation via both decreases in myosin light chain phosphorylation and actin depolymerization, whereas sodium nitroprusside produces smooth muscle relaxation primarily via actin depolymerization. NEW & NOTEWORTHY This article adds to the accumulating evidence on the contribution of the actin cytoskeleton to the regulation of vascular smooth muscle tone in resistance arterioles. Actin depolymerization appears to be an important mechanism for vasodilation of resistance arterioles to pharmacological agonists. Dilation to the K+ channel opener pinacidil is produced by decreases in myosin light chain phosphorylation and actin depolymerization, whereas dilation to the nitric oxide donor sodium nitroprusside occurs primarily via actin depolymerization. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/vascular-smooth-muscle-actin-depolymerization/ .


Sign in / Sign up

Export Citation Format

Share Document