A shell theory compared with the exact three dimensional theory of elasticity

1968 ◽  
Vol 6 (8) ◽  
pp. 435-464 ◽  
Author(s):  
Chester B. Sensenig
1995 ◽  
Vol 62 (1) ◽  
pp. 43-52 ◽  
Author(s):  
G. A. Kardomateas

The bifurcation of equilibrium of an orthotropic thick cylindrical shell under axial compression is studied by an appropriate formulation based on the three-dimensional theory of elasticity. The results from this elasticity solution are compared with the critical loads predicted by the orthotropic Donnell and Timoshenko nonshallow shell formulations. As an example, the cases of an orthotropic material with stiffness constants typical of glass/epoxy and the reinforcing direction along the periphery or along the cylinder axis are considered. The bifurcation points from the Timoshenko formulation are always found to be closer to the elasticity predictions than the ones from the Donnell formulation. For both the orthotropic material cases and the isotropic one, the Timoshenko bifurcation point is lower than the elasticity one, which means that the Timoshenko formulation is conservative. The opposite is true for the Donnell shell theory, i.e., it predicts a critical load higher than the elasticity solution and therefore it is nonconservative. The degree of conservatism of the Timoshenko theory generally increases for thicker shells. Likewise, the Donnell theory becomes in general more nonconservative with thicker construction.


1993 ◽  
Vol 60 (2) ◽  
pp. 506-513 ◽  
Author(s):  
G. A. Kardomateas

The stability of equilibrium of a transversely isotropic thick cylindrical shell under axial compression is investigated. The problem is treated by making appropriate use of the three-dimensional theory of elasticity. The results are compared with the critical loads furnished by classical shell theories. For the isotropic material cases considered, the elasticity approach predicts a lower critical load than the shell theories, the percentage reduction being larger with increasing thickness. However, both the Flu¨gge and Danielson and Simmonds theories predict critical loads much closer to the elasticity value than the Donnell theory. Moreover, the values of n, m (number of circumferential waves and number of axial half-waves, respectively, at the critical point) for both the elasticity, and the Flu¨gge and the Danielson and Simmonds theories, show perfect agreement, unlike the Donnell shell theory.


1967 ◽  
Vol 1 (2) ◽  
pp. 122-135 ◽  
Author(s):  
Staley F. Adams ◽  
M. Maiti ◽  
Richard E. Mark

This investigation was undertaken to develop a rigorous mathe matical solution of stress and strain for a composite pole con sisting of a reinforced plastics jacket laminated on a solid wood core. The wood and plastics are treated as orthotropic materials. The problem of bending of such poles as cantilever beams has been determined by the application of the principles of three- dimensional theory of elasticity. Values of all components of the stress tensor in cylindrical coordinates are given for the core and jacket. Exact values for the stresses have been obtained from computer results, using the basic elastic constants—Poisson's ratios, moduli of elasticity and moduli of rigidity—for each ma terial. A comparison of the numerical results of the exact solu tion with strength of materials solutions has been completed.


1958 ◽  
Vol 25 (4) ◽  
pp. 437-443 ◽  
Author(s):  
S. J. Medwadowski

Abstract A refined theory of elastic, orthotropic plates is presented. The theory includes the effect of transverse shear deformation and normal stress and may be considered a generalization of the classical theory of von Karman modified by the refinements of the Levy-Reissner-Mindlin theories. A nonlinear system of equations is derived directly from the corresponding equations of the three-dimensional theory of elasticity in which body-force terms have been retained. Next, the system of equations is linearized and reduced to a single sixth-order partial differential equation in a stress function. A Levy-type solution of this equation is discussed.


Sign in / Sign up

Export Citation Format

Share Document