Stability Loss in Thick Transversely Isotropic Cylindrical Shells Under Axial Compression

1993 ◽  
Vol 60 (2) ◽  
pp. 506-513 ◽  
Author(s):  
G. A. Kardomateas

The stability of equilibrium of a transversely isotropic thick cylindrical shell under axial compression is investigated. The problem is treated by making appropriate use of the three-dimensional theory of elasticity. The results are compared with the critical loads furnished by classical shell theories. For the isotropic material cases considered, the elasticity approach predicts a lower critical load than the shell theories, the percentage reduction being larger with increasing thickness. However, both the Flu¨gge and Danielson and Simmonds theories predict critical loads much closer to the elasticity value than the Donnell theory. Moreover, the values of n, m (number of circumferential waves and number of axial half-waves, respectively, at the critical point) for both the elasticity, and the Flu¨gge and the Danielson and Simmonds theories, show perfect agreement, unlike the Donnell shell theory.

1995 ◽  
Vol 62 (1) ◽  
pp. 43-52 ◽  
Author(s):  
G. A. Kardomateas

The bifurcation of equilibrium of an orthotropic thick cylindrical shell under axial compression is studied by an appropriate formulation based on the three-dimensional theory of elasticity. The results from this elasticity solution are compared with the critical loads predicted by the orthotropic Donnell and Timoshenko nonshallow shell formulations. As an example, the cases of an orthotropic material with stiffness constants typical of glass/epoxy and the reinforcing direction along the periphery or along the cylinder axis are considered. The bifurcation points from the Timoshenko formulation are always found to be closer to the elasticity predictions than the ones from the Donnell formulation. For both the orthotropic material cases and the isotropic one, the Timoshenko bifurcation point is lower than the elasticity one, which means that the Timoshenko formulation is conservative. The opposite is true for the Donnell shell theory, i.e., it predicts a critical load higher than the elasticity solution and therefore it is nonconservative. The degree of conservatism of the Timoshenko theory generally increases for thicker shells. Likewise, the Donnell theory becomes in general more nonconservative with thicker construction.


1970 ◽  
Vol 37 (1) ◽  
pp. 101-108 ◽  
Author(s):  
A. P. Misovec ◽  
J. Kempner

An approximate solution to the Navier equations of the three-dimensional theory of elasticity for an axisymmetric orthotopic circular cylinder subjected to internal and external pressure, axial loads, and closely spaced periodic radial loads is developed. Numerical comparison with the exact solution for the special case of a transversely isotropic cylinder subjected to periodic band loads shows that very good accuracy is obtainable. When the results of the approximate solution are compared with previously obtained results of a Flu¨gge-type shell solution of a ring-reinforced orthotropic cylinder, it is found that the shell theory gives fairly accurate representations of the deformations and stresses except in the neighborhood of discontinuous loads. The addition of transverse shear deformations does not improve the accuracy of the shell solution.


2019 ◽  
Vol 81 (1) ◽  
pp. 30-39
Author(s):  
M. I. Karyakin ◽  
L. P. Obrezkov

The problem of equilibrium and stability of a hollow cylinder subjected to simultaneous uniaxial tension/compression and inflation is considered within the framework of the three-dimensional nonlinear theory of elasticity. To describe the mechanical properties of the material of the cylinder five-constant Murnaghan model is used. By the semi-inverse method the three-dimensional problem is reduced to the study of a nonlinear boundary value problem for an ordinary second-order differential equation. For most sets of material parameters known from the literature, the presence of a falling section in the stretching/inflation diagram, indicating the possible existence of instability zones even in the area of tensile stresses, has been found numerically. The stability analysis was carried out using a bifurcation approach based on linearization of the equilibrium equations in the neighborhood of the constructed solution by means of the method of imposing a small strain on a finite one. The value of a particular deformation characteristic, for which non-trivial solutions of a homogeneous boundary-value problem exist for the equations of neutral equilibrium obtained in the linearization process, was identified with the critical value of the loading parameter, i.e. value at which the system loses stability. As a rule, the coefficient of stretching/shortening of the cylinder and the coefficient of increase/decrease of its internal or external radius were chosen as such parameters. On the plane of the above-mentioned deformation characteristics the areas of stability under tension and compression, as well as under compression by external force and inflation by internal pressure, are constructed. The forms of possible of stability loss depending on the type of stress state are constructed, and the effect on the stability of material and geometric parameters is studied.


1967 ◽  
Vol 1 (2) ◽  
pp. 122-135 ◽  
Author(s):  
Staley F. Adams ◽  
M. Maiti ◽  
Richard E. Mark

This investigation was undertaken to develop a rigorous mathe matical solution of stress and strain for a composite pole con sisting of a reinforced plastics jacket laminated on a solid wood core. The wood and plastics are treated as orthotropic materials. The problem of bending of such poles as cantilever beams has been determined by the application of the principles of three- dimensional theory of elasticity. Values of all components of the stress tensor in cylindrical coordinates are given for the core and jacket. Exact values for the stresses have been obtained from computer results, using the basic elastic constants—Poisson's ratios, moduli of elasticity and moduli of rigidity—for each ma terial. A comparison of the numerical results of the exact solu tion with strength of materials solutions has been completed.


Author(s):  
Oleksandr Ahafonov ◽  
◽  
Daria Chepiga ◽  
Anton Polozhiy ◽  
Iryna Bessarab ◽  
...  

Purpose. Substantiation of expediency and admissibility of use of the simplified calculation models of a coal seam roof for an estimation of its stability under the action of external loadings. Methods. To achieve this purpose, the studies have been performed using the basic principles of the theory of elasticity and bending of plates, in which the coal seam roof is represented as a model of a rectangular plate or a beam with a symmetrical cross-section with different support conditions. Results. To substantiate and select methods for studying the bending deformations of the roof in the coal massif containing the maingates, the three-dimensional base plate model and the beam model are compared, taking into account the kinematic boundary conditions and the influence of external distributed load. Using the theory of plate bending, the equations for determining the deflections of the coal seam roof in three-dimensional basic models under certain assumptions have a large dimension. After the conditional division of the plate into beams of unit width and symmetrical section, when describing the normal deflections of the middle surface of the studied models, the transition from the partial derivative equation to the usual differential equations is carried out. In this case, the studies of bending deformations of roof rocks are reduced to solving a flat problem in the cross-section of the beam. A comparison of solutions obtained by the methods of the three-dimensional theory of elasticity and strength of materials was performed. For a beam with a symmetrical section, the deflection lies in a plane whose angle of inclination coincides with the direction of the applied load. The calculations did not take into account the difference between the intensity of the surface load applied to the beam. Differences in determining the magnitude of the deflections of the roof in the model of the plate concerning the model of the beam reach 5%, which is acceptable for mining problems. Scientific novelty. To study the bending deformations and determine the magnitude of the roof deflection in models under external uniform distributed load, placed within the simulated plate, a strip of unit width was selected, which has a symmetrical cross-section and is a characteristic component of the plate structure and it is considered as a separate load-bearing element with supports, the cross-sections of this element is remained flat when bending. The deflection of such a linear element is described by the differential equations of the bent axis of the beam without taking into account the integral stiffness of the model, and the vector of its complete displacement coincides with the vector of the force line. Practical significance. In the laboratory, to study the bending deformations and their impact on the stability of the coal seam roof under external loads, it is advisable to use a model of a single width beam with a symmetrical section with supports, the type of which is determined by rock pressure control and secondary support of the maingate at the extraction layout of the coal mine.


Sign in / Sign up

Export Citation Format

Share Document