Heat transfer in boundary layer flow of a micropolar fluid past a curved surface with suction and injection

1979 ◽  
Vol 17 (5) ◽  
pp. 625-639 ◽  
Author(s):  
P.Subhadra Ramachandran ◽  
M.N. Mathur ◽  
S.K. Ojha
2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2013 ◽  
Vol 40 (3) ◽  
pp. 403-425 ◽  
Author(s):  
Mosharf Hossain ◽  
Nepal Roy ◽  
Anwar Hossain

An analysis is performed to study the shear stress, the couple-stress and heat transfer characteristics of a laminar mixed convection boundary layer flow of a micropolar fluid past an isothermal permeable plate. The governing nonsimilar boundary layer equations are analyzed using the (i) series solution for small ?, (ii) asymptotic solution for large ? and (iii) primitive-variable formulation and the stream function formulation are being used for all ?. The effects of the material parameters, such as, the vortex viscosity parameter, K, and the transpiration parameter, s, on the shear stress, the couple-stress and heat transfer have been investigated. The agreement between the solutions obtained from the stream-function formulation and the primitive-variable formulation is found to be excellent.


Sign in / Sign up

Export Citation Format

Share Document