Large amplitude response of circular plates on elastic foundations

1982 ◽  
Vol 17 (4) ◽  
pp. 285-296 ◽  
Author(s):  
Y. Nath
Author(s):  
Dumitru I. Caruntu ◽  
Julio Beatriz ◽  
Jonathan Perez

Abstract This paper deals with voltage-amplitude response of superharmonic resonance of second order of electrostatically actuated clamped MEMS circular plates. A flexible MEMS circular plate, parallel to a ground plate, and under AC voltage, constitute the structure under consideration. Hard excitations due to voltage large enough and AC frequency near one fourth of the natural frequency of the MEMS plate resonator lead the MEMS plate into superharmonic resonance of second order. These excitations produce resonance away from the primary resonance zone. No DC component is included in the voltage applied. The equation of motion of the MEMS plate is solved using two modes of vibration reduced order model (ROM), that is then solved through a continuation and bifurcation analysis using the software package AUTO 07P. This predicts the voltage-amplitude response of the electrostatically actuated MEMS plate. Also, a numerical integration of the system of differential equations using Matlab is used to produce time responses of the system. A typical MEMS silicon circular plate resonator is used to conduct numerical simulations. For this resonator the quantum dynamics effects such as Casimir effect are considered. Also, the Method of Multiple Scales (MMS) is used in this work. All methods show agreement for dimensionless voltage values less than 6. The amplitude increases with the increase of voltage, except around the dimensionless voltage value of 4, where the resonance shows two saddle-node bifurcations and a peak amplitude significantly larger than the amplitudes before and after the dimensionless voltage of 4. A light softening effect is present. The pull-in dimensionless voltage is found to be around 16. The effects of damping and frequency on the voltage response are reported. As the damping increases, the peak amplitude decreases. while the pull-in voltage is not affected. As the frequency increases, the peak amplitude is shifted to lower values and lower voltage values. However, the pull-in voltage and the behavior for large voltage values are not affected.


2020 ◽  
Vol 60 (2) ◽  
pp. 127-144
Author(s):  
Saheed Salawu ◽  
Gbeminiyi Sobamowo ◽  
Obanishola Sadiq

The study of the dynamic behaviour of non-uniform thickness circular plate resting on elastic foundations is very imperative in designing structural systems. This present research investigates the free vibration analysis of varying density and non-uniform thickness isotropic circular plates resting on Winkler and Pasternak foundations. The governing differential equation is analysed using the Galerkin method of weighted residuals. Linear and nonlinear case is considered, the surface radial and circumferential stresses are also determined. Thereafter, the accuracy and consistency of the analytical solutions obtained are ascertained by comparing the existing results available in pieces of literature and confirmed to be in a good harmony. Also, it is observed that very accurate results can be obtained with few computations. Issues relating to the singularity of circular plate governing equations are handled with ease. The analytical solutions obtained are used to determine the influence of elastic foundations, homogeneity and thickness variation on the dynamic behaviour of the circular plate, the effect of vibration on a free surface of the foundation as well as the influence of radial and circumferential stress on mode shapes of the circular plate considered. From the results, it is observed that a maximum of 8.1% percentage difference is obtained with the solutions obtained from other analytical methods. Furthermore, increasing the elastic foundation parameter increases the natural frequency. Extrema modal displacement occurs due to radial and circumferential stress. Natural frequency increases as the thickness of the circular plate increases, Conversely, a decrease in natural frequency is observed as the density varies. It is envisioned that; the present study will contribute to the existing knowledge of the classical theory of vibration.


2019 ◽  
Vol 25 (9) ◽  
pp. 1507-1520 ◽  
Author(s):  
Hui-Shen Shen ◽  
Y Xiang ◽  
Yin Fan

This paper investigates the small- and large-amplitude vibrations of thermally postbuckled graphene-reinforced composite (GRC) laminated plates resting on elastic foundations. The piecewise GRC layers are arranged in a functionally graded (FG) pattern along the thickness direction of the plate. The anisotropic and temperature-dependent material properties of the FG-GRC layers are estimated through the extended Halpin–Tsai micromechanical model. Based on the Reddy's higher order shear deformation plate theory and the von Kármán strain–displacement relationships, the motion equations of the plates are derived. The foundation support, the thermal effect, and the initial deflection caused by thermal postbuckling are also included in the derivation. A two-step perturbation approach is applied to determine the thermal postbuckling equilibrium paths as well as the nonlinear vibration solutions for the FG-GRC laminated plates. The numerical illustrations concern small- and large-amplitude vibration characteristics of thermally postbuckled FG-GRC laminated plates under a uniform temperature field. The effects of graphene reinforcement distributions and foundation stiffnesses on the vibration responses of FG-GRC laminated plates are examined in detail.


Sign in / Sign up

Export Citation Format

Share Document