Elastic-plastic analysis of combined mode I, II and III crack-tip fields under small-scale yielding conditions

1992 ◽  
Vol 29 (22) ◽  
pp. 2795-2814 ◽  
Author(s):  
J. Pan ◽  
C.F. Shih
1976 ◽  
Vol 98 (2) ◽  
pp. 146-151 ◽  
Author(s):  
D. M. Tracey

The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.


1989 ◽  
Vol 56 (4) ◽  
pp. 763-779 ◽  
Author(s):  
C. F. Shih ◽  
R. J. Asaro

In Part I we found that although the near tip fields of cracks on bimaterial interfaces do not have a separable form of the HRR type, they appear to be nearly separable in an annular zone within the plastic zone. Furthermore, the fields bear strong similarities to mixed mode HRR fields for homogeneous medium. Based on our numerical results, we have been able to identify a clear mathematical structure. We found that the small-scale yielding crack tip fields are members of a family parameterized by a near tip phase angle ξ, and that the fields nearly scale with the value of the J-integral. In Part II, the original derivation of the mathematical structure of the small-scale yielding fields is elaborated upon. The issue of crack face contact is addressed and the phenomenology is described in terms of the phase parameter ξ. Crack tip plastic deformation results in an open crack for a range of ξ which is nearly symmetric about the state corresponding to pure remote tension. Plane-strain plastic zones and crack tip fields for the complete range of ξ are presented. Over distances comparable to the size of the dominant plastic zone, the stress levels that can be achieved are limited by the yield stress of the weaker (lower yield strength) material. On the other hand, the stresses well within the plastic zone are governed by the strain-hardening behavior of the more plastically compliant (lower strain-hardening) material. We observe that the extent of the annular zone where the fields are nearly separable (i.e., of the HRR form) is dependent on the remote load combinations and the material combination. When the tractions on the interface are predominantly tensile, there are no indications of crack face contact over any length scale of physical relevance. Instead, the crack tip opens smoothly and crack tip fields as well as the crack opening displacement are scaled by the J-integral. The paper concludes with a discussion on the range of load combinations which could be applied to two fracture test specimen geometries to obtain valid fracture toughness data.


2005 ◽  
Vol 32 (3) ◽  
pp. 193-207
Author(s):  
Ruzica Nikolic ◽  
Jelena Veljkovic

In this paper are presented solutions for the stress and dis?placement fields for a crack that lies along the interface of an elastic and elastic - plastic material and for a crack between two different elastic - plastic materials. These solutions are obtained using the J2-deformation theory with the power - law strain hardening. In this paper results are described for a small scale yielding at the crack tip. The near tip fields do not have a separable singular form, of the HRR type fields, as in homogeneous media, they do, however bare interesting similarities to certain mixed -mode HRR fields. Under the small scale yielding the elastic fields are specified by a complex stress intensity factor and phase angle loading, while plastic field is characterized by a new phase angle. The size of plastic zone in plane strain and plane stress and displacement fields at the crack tip for the new phase angle are obtained. The crack tip opens smoothly and the crack opening displacement is scaled by the J-integral. The whole analysis is performed by application of the Mathematica symbolic programming routine.


1990 ◽  
Vol 57 (2) ◽  
pp. 259-267 ◽  
Author(s):  
J. Pan ◽  
C. F. Shih

Within the context of the small-strain approach, combined mode II and III small-scale yielding solutions of a stationary crack are obtained by finite element analysis. To investigate the behavior of the near-tip fields, the normalized stresses ahead of the crack tip are plotted as functions of the normalized radial distance to the tip for several combinations of prescribed mode II and III elastic K fields. The angular variations of the normalized stresses at a fixed radial distance deep within the plastic zone are also plotted for several combinations of remote mode II and III elastic K fields. These plots show an interesting pattern: Well within the plastic zone, the in-plane stresses can be said to be slightly less singular than r-1/(n+1) while the out-of-plane shear stresses are slightly more singular than r-1/(n+1), where n is the strain-hardening exponent of the material. However, over physically relevant distances ahead of the tip and for the full range of combined mode II and III loadings, the ratio of the in-plane shear stress to the out-of-plane shear stress agrees well with the ratio estimated by linear elastic crack-tip fields.


Sign in / Sign up

Export Citation Format

Share Document