The general solution of three-dimensional problems in piezoelectric media

1995 ◽  
Vol 32 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Wang Zikung ◽  
Zheng Bailin
1949 ◽  
Vol 2 (4) ◽  
pp. 469
Author(s):  
W Freiberger ◽  
RCT Smith

In this paper we discuss the flexure of an incomplete tore in the plane of its circular centre-line. We reduce the problem to the determination of two harmonic functions, subject to boundary conditions on the surface of the tore which involve the first two derivatives of the functions. We point out the relation of this solution to the general solution of three-dimensional elasticity problems. The special case of a narrow rectangular cross-section is solved exactly in Appendix II.


Author(s):  
T. T. C. Ting

In this chapter we study Stroh's sextic formalism for two-dimensional deformations of an anisotropic elastic body. The Stroh formalism can be traced to the work of Eshelby, Read, and Shockley (1953). We therefore present the latter first. Not all results presented in this chapter are due to Stroh (1958, 1962). Nevertheless we name the sextic formalism after Stroh because he laid the foundations for researchers who followed him. The derivation of Stroh's formalism is rather simple and straightforward. The general solution resembles that obtained by the Lekhnitskii formalism. However, the resemblance between the two formalisms stops there. As we will see in the rest of the book, the Stroh formalism is indeed mathematically elegant and technically powerful in solving two-dimensional anisotropic elasticity problems. The possibility of extending the formalism to three-dimensional deformations is explored in Chapter 15.


Author(s):  
R. T. Shield

Three-dimensional stress distributions in hexagonal aeolotropic materials have recently been considered by Elliott(1, 2), who obtained a general solution of the elastic equations of equilibrium in terms of two ‘harmonic’ functions, or, in the case of axially symmetric stress distributions, in terms of a single stress function. These stress functions are analogous to the stress functions employed to define stress systems in isotropic materials, and in the present note further problems in hexagonal aeolotropic media are solved, the method in each case being similar to that used for the corresponding problem in isotropic materials. Because of this similarity detailed explanations are unnecessary and only the essential steps in the working are given below.


Sign in / Sign up

Export Citation Format

Share Document