The Stroh Formalism

Author(s):  
T. T. C. Ting

In this chapter we study Stroh's sextic formalism for two-dimensional deformations of an anisotropic elastic body. The Stroh formalism can be traced to the work of Eshelby, Read, and Shockley (1953). We therefore present the latter first. Not all results presented in this chapter are due to Stroh (1958, 1962). Nevertheless we name the sextic formalism after Stroh because he laid the foundations for researchers who followed him. The derivation of Stroh's formalism is rather simple and straightforward. The general solution resembles that obtained by the Lekhnitskii formalism. However, the resemblance between the two formalisms stops there. As we will see in the rest of the book, the Stroh formalism is indeed mathematically elegant and technically powerful in solving two-dimensional anisotropic elasticity problems. The possibility of extending the formalism to three-dimensional deformations is explored in Chapter 15.

Author(s):  
T. T. C. Ting

There appears to be very little study, if any, on the extension of Stroh's formalism to three-dimensional deformations of anisotropic elastic materials. In most three-dimensional problems the analyses employ approaches that are remotely related to Stroh's two-dimensional formalism. This is not unexpected, since this has been the situation between two-dimensional and three-dimensional isotropic elasticity. However it needs not be the case for three-dimensional anisotropic elasticity. Much can be gained if a connection to the Stroh formalism can be established. Barnett and Lothe (1975a) appeared to be the only ones who made a connection between a three-dimensional solution and Stroh's two-dimensional formalism. Earlier, several investigators obtained the Green's function for the infinite anisotropic medium in term of a line integral on an oblique plane in the three-dimensional space. That line integral, as we will see here, is one of Barnett-Lothe tensors on an oblique plane. We propose in this chapter extensions and applications of Stroh's two-dimensional formalism to certain three-dimensional deformations of anisotropic elastic solids.


2000 ◽  
Vol 68 (3) ◽  
pp. 468-475
Author(s):  
Chyanbin Hwu ◽  
J. Y. Wu ◽  
C. W. Fan ◽  
M. C. Hsieh

A general solution satisfying the strain-displacement relation, the stress-strain laws and the equilibrium conditions has been obtained in Stroh formalism for the generalized two-dimensional anisotropic elasticity. The general solution contains three arbitrary complex functions which are the basis of the whole field stresses and deformations. By selecting these arbitrary functions to be linear or quadratic, and following the direct finite element formulation, a new finite element satisfying both the compatibility and equilibrium within each element is developed in this paper. A computer windows program is then coded by using the FORTRAN and Visual Basic languages. Two numerical examples are shown to illustrate the performance of this newly developed finite element. One is the uniform stress field problem, the other is the stress concentration problem.


1949 ◽  
Vol 2 (4) ◽  
pp. 469
Author(s):  
W Freiberger ◽  
RCT Smith

In this paper we discuss the flexure of an incomplete tore in the plane of its circular centre-line. We reduce the problem to the determination of two harmonic functions, subject to boundary conditions on the surface of the tore which involve the first two derivatives of the functions. We point out the relation of this solution to the general solution of three-dimensional elasticity problems. The special case of a narrow rectangular cross-section is solved exactly in Appendix II.


Author(s):  
T. T. C. Ting

A two-dimensional deformation means that the displacements ui, (i= 1,2,3) or the stresses σij depend on x1 and x2 only. Among several formalisms for two-dimensional deformations of anisotropic elastic materials the Lekhnitskii (1950, 1957) formalism is the oldest, and has been extensively employed by the engineering community. The Lekhnitskii formalism essentially generalizes the Muskhelishvili (1953) approach for solving two-dimensional deformations of isotropic elastic materials. The formalism begins with the stresses and assumes that they depend on x1 and x2 only. The Stroh formalism, to be introduced in the next chapter, starts with the displacements and assumes that they depend on x1 and x2 only. Therefore the Lekhnitskii formalism is in terms of the reduced elastic compliances while the Stroh formalism is in terms of the elastic stiffnesses. It should be noted that Green and Zerna (1960) also proposed a formalism for two-dimensional deformations of anisotropic elastic materials. Their approach however is limited to materials that possess a symmetry plane at x3=0. The derivations presented below do not follow exactly those of Lekhnitskii.


A complete class of first order conservation laws for two dimensional deformations in general anisotropic elastic materials is derived. The derivations are based on Stroh’s formalism for anisotropic elasticity. The general procedure proposed by P. J. Olver for the construction of conservation integrals is followed. It is shown that the conservation laws are intimately connected with Cauchy’s theorem for complex analytic functions. Real-form conservation laws that are valid for degenerate or non-degenerate materials are given.


1980 ◽  
Vol 15 (1) ◽  
pp. 37-41 ◽  
Author(s):  
P S Theocaris ◽  
N I Ioakimidis

The optical method of caustics constitutes an efficient experimental technique for the determination of quantities of interest in elasticity problems. Up to now, this method has been applied only to two-dimensional elasticity problems (including plate and shell problems). In this paper, the method of caustics is extended to the case of three-dimensional elasticity problems. The particular problems of a concentrated force and a uniformly distributed loading acting normally on a half-space (on a circular region) are treated in detail. Experimentally obtained caustics for the first of these problems were seen to be in satisfactory agreement with the corresponding theoretical forms. The treatment of various, more complicated, three-dimensional elasticity problems, including contact problems, by the method of caustics is also possible.


2017 ◽  
Vol 743 ◽  
pp. 153-157 ◽  
Author(s):  
Leonid A. Igumnov ◽  
Ivan Markov

In this paper, the direct boundary element method in the Laplace domain is applied for the solution of three-dimensional transient dynamic problems of anisotropic elasticity in multi-connected domains. The formulation is based upon the integral representations of anisotropic dynamic fundamental solutions. As numerical example the problem of an anisotropic elastic prismatic solid with cubic cavity is investigated.


Author(s):  
T. T. C. Ting

The Stroh formalism presented in Sections 5.3 and 5.5 assumes that the 6×6 fundamental elasticity matrix N is simple, i.e., the three pairs of eigenvalues pα are distinct. The eigenvectors ξα (α=l,2,3) are independent of each other, and the general solution (5.3-10) consists of three independent solutions. The formalism remains valid when N is semisimple. In this case there is a repeated eigenvalue, say p2=p1 ,but there exist two independent eigenvectors ξ2 and ξ1 associated with the repeated eigenvalue. The general solution (5.3-10) continues to consist of three independent solutions. Moreover one can always choose ξ2 and ξ1 such that the orthogonality relations (5.5-11) and the subsequent relations (5.5-13)-(5.5- 17) hold. When N is nonsemisimple with p2=p1, there exists only one independent eigenvector associated with the repeated eigenvalue. The general solution (5.3-10) now contains only two independent solutions. The orthogonality relations (5.5-11) do not hold for α,β=l,2 and 4,5, and the relations (5.5-13)-(5.5-17) are not valid. Anisotropic elastic materials with a nonsemisimple N are called degenerate materials. They are degenerate in the mathematical sense, not necessarily in the physical sense. Isotropic materials are a special group of degenerate materials that happen to be degenerate also in the physical sense. There are degenerate anisotropic materials that have no material symmetry planes (Ting, 1994). It should be mentioned that the breakdown of the formalism for degenerate materials is not limited to the Stroh formalism. Other formalisms have the same problem. We have seen in Chapters 8 through 12 that in many applications the arbitrary constant q that appears in the general solution (5.3-10) can be determined analytically using the relations (5.5-13)-(5.5- 17). These solutions are consequently not valid for degenerate materials. Alternate to the algebraic representation of S, H, L in (5.5-17), it is shown in Section 7.6 that one can use an integral representation to determine S, H, L without computing the eigenvalues pα and the eigenvectors ξα. If the final solution is expressed in terms of S, H, and L the solution is valid for degenerate materials.


Sign in / Sign up

Export Citation Format

Share Document