scholarly journals Verma module imbeddings and the Bruhat order for Kac-Moody algebras

1987 ◽  
Vol 109 (2) ◽  
pp. 430-438
Author(s):  
Wayne Neidhardt
Keyword(s):  
2014 ◽  
Vol 6 (2) ◽  
pp. 1079-1105
Author(s):  
Rahul Nigam

In this review we study the elementary structure of Conformal Field Theory in which is a recipe for further studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT lives on the AdS boundary. We also describe the mapping of the theory from the cylinder to a complex plane which will help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the representation of the Virasoro algebra which is the well-known "Verma module".  


Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


2017 ◽  
Vol 24 (02) ◽  
pp. 285-296 ◽  
Author(s):  
Wenlan Ruan ◽  
Honglian Zhang ◽  
Jiancai Sun

We study the structure of the generalized 2-dim affine-Virasoro algebra, and describe its automorphism group. Furthermore, we also determine the irreducibility of a Verma module over the generalized 2-dim affine-Virasoro algebra.


2007 ◽  
Vol 06 (05) ◽  
pp. 779-787 ◽  
Author(s):  
SONIA L'INNOCENTE ◽  
MIKE PREST

Let M be a Verma module over the Lie algebra, sl 2(k), of trace zero 2 × 2 matrices over the algebraically closed field k. We show that the ring, RM, of definable scalars of M is a von Neumann regular ring and that the canonical map from U( sl 2(k)) to RM is an epimorphism of rings. We also describe the Ziegler closure of M. The proofs make use of ideas from the model theory of modules.


Order ◽  
2011 ◽  
Vol 30 (1) ◽  
pp. 255-260 ◽  
Author(s):  
Alessandro Conflitti ◽  
C. M. da Fonseca ◽  
Ricardo Mamede
Keyword(s):  

Author(s):  
Chris Radford ◽  
Masayuki Kawakita ◽  
Victor Rivelles ◽  
Volodymyr Mazorchuk
Keyword(s):  

2011 ◽  
Vol 63 (6) ◽  
pp. 1238-1253 ◽  
Author(s):  
Daniel Bump ◽  
Maki Nakasuji

AbstractW. Casselman defined a basis fu of Iwahori fixed vectors of a spherical representation of a split semisimple p-adic group G over a nonarchimedean local field F by the condition that it be dual to the intertwining operators, indexed by elements u of the Weyl group W. On the other hand, there is a natural basis , and one seeks to find the transition matrices between the two bases. Thus, let and . Using the Iwahori–Hecke algebra we prove that if a combinatorial condition is satisfied, then , where z are the Langlands parameters for the representation and α runs through the set S(u, v) of positive coroots (the dual root systemof G) such that with rα the reflection corresponding to α. The condition is conjecturally always satisfied if G is simply-laced and the Kazhdan–Lusztig polynomial Pw0v,w0u = 1 with w0 the long Weyl group element. There is a similar formula for conjecturally satisfied if Pu,v = 1. This leads to various combinatorial conjectures.


10.37236/1871 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
John R. Stembridge

It is a well-known theorem of Deodhar that the Bruhat ordering of a Coxeter group is the conjunction of its projections onto quotients by maximal parabolic subgroups. Similarly, the Bruhat order is also the conjunction of a larger number of simpler quotients obtained by projecting onto two-sided (i.e., "double") quotients by pairs of maximal parabolic subgroups. Each one-sided quotient may be represented as an orbit in the reflection representation, and each double quotient corresponds to the portion of an orbit on the positive side of certain hyperplanes. In some cases, these orbit representations are "tight" in the sense that the root system induces an ordering on the orbit that yields effective coordinates for the Bruhat order, and hence also provides upper bounds for the order dimension. In this paper, we (1) provide a general characterization of tightness for one-sided quotients, (2) classify all tight one-sided quotients of finite Coxeter groups, and (3) classify all tight double quotients of affine Weyl groups.


Sign in / Sign up

Export Citation Format

Share Document