Calculation of the boundary derivatives of the solutions of the first and second boundary-value problems for Poisson's equation

1994 ◽  
Vol 58 (3) ◽  
pp. 551-557
Author(s):  
A.A. Kosmodem'yanskii
2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
W. M. Abd-Elhameed

This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms.


1992 ◽  
Vol 35 (3) ◽  
pp. 371-375
Author(s):  
Nezam Iraniparast

AbstractA method will be introduced to solve problems utt — uss = h(s, t), u(t,t) - u(1+t,1 - t), u(s,0) = g(s), u(1,1) = 0 and for (s, t) in the characteristic triangle R = {(s,t) : t ≤ s ≤ 2 — t, 0 ≤ t ≤ 1}. Here represent the directional derivatives of u in the characteristic directions e1 = (— 1, — 1) and e2 = (1, — 1), respectively. The method produces the symmetric Green's function of Kreith [1] in both cases.


Sign in / Sign up

Export Citation Format

Share Document