Variation of medial and lateral plateau loads at the knee joint with different lever arms of the ground reaction force vector

1989 ◽  
Vol 22 (10) ◽  
pp. 1044
Author(s):  
Håkan Lanshammar
2015 ◽  
Vol 64 (2) ◽  
pp. 76-81 ◽  
Author(s):  
GR Colborne ◽  
JE Routh ◽  
KR Weir ◽  
JE McKendry ◽  
E Busschers

2002 ◽  
Vol 205 (10) ◽  
pp. 1485-1494 ◽  
Author(s):  
Thomas J. Roberts ◽  
Jeffrey A. Scales

SUMMARYWe tested the hypothesis that the hindlimb muscles of wild turkeys(Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg-1 hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg-1muscle during the highest accelerations. The high power outputs observed during accelerations suggest that elastic energy storage and recovery may redistribute muscle power during acceleration. Elastic mechanisms may expand the functional range of muscle contractile elements in running animals by allowing muscles to vary their mechanical function from force-producing struts during steady-speed running to power-producing motors during acceleration.


Medicina ◽  
2020 ◽  
Vol 56 (2) ◽  
pp. 56
Author(s):  
Kunihiro Watanabe ◽  
Hirotaka Mutsuzaki ◽  
Takashi Fukaya ◽  
Toshiyuki Aoyama ◽  
Syuichi Nakajima ◽  
...  

Background and objectives: There are no reports on articular stress distribution during walking based on any computed tomography (CT)-finite element model (CT-FEM). This study aimed to develop a calculation model of the load response (LR) phase, the most burdensome phase on the knee, during walking using the finite element method of quantitative CT images. Materials and Methods: The right knee of a 43-year-old man who had no history of osteoarthritis or surgeries of the knee was examined. An image of the knee was obtained using CT and the extension position image was converted to the flexion angle image in the LR phase. The bone was composed of heterogeneous materials. The ligaments were made of truss elements; therefore, they do not generate strain during expansion or contraction and do not affect the reaction force or pressure. The construction of the knee joint included material properties of the ligament, cartilage, and meniscus. The extensor and flexor muscles were calculated and set as the muscle exercise tension around the knee joint. Ground reaction force was vertically applied to suppress the rotation of the knee, and the thigh was restrained. Results: An FEM was constructed using a motion analyzer, floor reaction force meter, and muscle tractive force calculation. In a normal knee, the equivalent stress and joint contact reaction force in the LR phase were distributed over a wide area on the inner upper surface of the femur and tibia. Conclusions: We developed a calculation model in the LR phase of the knee joint during walking using a CT-FEM. Methods to evaluate the heteromorphic risk, mechanisms of transformation, prevention of knee osteoarthritis, and treatment may be developed using this model.


2014 ◽  
Vol 14 (05) ◽  
pp. 1450079 ◽  
Author(s):  
TAKASHI FUKAYA ◽  
HIROTAKA MUTSUZAKI ◽  
HAJIME ITO ◽  
YASUYOSHI WADANO

The purposes of this study were to clarify which period of the stance phase shows the greatest decrease in the smoothness of the knee joint movement and to analyze the relationships between kinetic variables and the smoothness of the knee joint movement during the stance phase using the angular jerk cost (AJC). The study subjects were 11 healthy adults. To clarify the relationships between the kinetic variables and the AJC, Pearson's product correlation coefficients were calculated for the AJC and three kinetic variables. The AJC in the early stance phase was significantly larger than those in the other three phases, and it was confirmed that the early stance phase showed the greatest decrease in smoothness of the knee joint movement. Furthermore, there was a positive correlation between the AJC and the vertical component of the ground reaction force in the early stance phase. Correlations between the AJC and the kinetic variables were also found in the other three phases. Regarding evaluation of the smoothness of the knee joint movement using the AJC based on the present results, the AJC may be an important index for understanding the dynamics of the knee joint in the early stance phase.


2010 ◽  
Vol 25 (4) ◽  
pp. 359-364 ◽  
Author(s):  
Jay R. Ebert ◽  
David G. Lloyd ◽  
Anne Smith ◽  
Timothy Ackland ◽  
David J. Wood

Sign in / Sign up

Export Citation Format

Share Document