vertical ground reaction force
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 124)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
pp. 194173812110634
Author(s):  
Adalberto Felipe Martinez ◽  
Rodrigo Scattone Silva ◽  
Bruna Lopes Ferreira Paschoal ◽  
Laura Ledo Antunes Souza ◽  
Fábio Viadanna Serrão

Background: Dorsiflexion range of motion restriction has been associated with patellar tendinopathy, but the mechanisms of how dorsiflexion restriction could contribute to knee overload remain unknown. Hypothesis: Peak ankle dorsiflexion and ankle dorsiflexion excursion are negatively associated with peak vertical ground-reaction force (vGRF) and loading rate, and with peak patellar tendon force and loading rate, and positively associated with peak ankle plantar flexor moment. Study Design: Cross-sectional study. Level of Evidence: Level 4. Methods: Kinematic and kinetic data of 26 healthy recreational jumping athletes were measured during a single-leg drop vertical jump. Pearson’s correlation coefficients were calculated to establish the association between peak ankle dorsiflexion and ankle dorsiflexion excursion with peak vGRF and vGRF loading rate, with peak patellar tendon force and patellar tendon force loading rate, and with peak ankle plantar flexor moment. Results: Ankle dorsiflexion excursion negatively correlated with peak vGRF loading rate ( r = −0.49; P = 0.011) and positively correlated with peak ankle flexor plantar moment ( r = 0.52; P = 0.006). In addition, there was a positive correlation between peak ankle dorsiflexion and peak vGRF ( r = 0.39; P = 0.05). Conclusion: Ankle kinematics are associated with vGRF loading rate, ankle flexor plantar moment and peak vGRF influencing knee loads, but no association was observed between ankle kinematics and patellar tendon loads. Clinical Relevance: These results suggest that increasing ankle dorsiflexion excursion may be an important strategy to reduce lower limb loads during landings but should not be viewed as the main factor for reducing patellar tendon force.


Obesities ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 209-219
Author(s):  
Mariana Borba Gomes ◽  
Luana Siqueira Andrade ◽  
Gabriela Neves Nunes ◽  
Marina Krause Weymar ◽  
Gustavo Zaccaria Schaun ◽  
...  

The aquatic environment represents an adequate and safe alternative for children with overweight to exercise. However, the magnitude of the vertical ground reaction force (Fz) during these exercises is unknown in this population. Therefore, our study aimed to compare the Fz during the stationary running exercise between the aquatic and land environments in children with overweight or obesity. The study is characterized as a cross-over study. Seven children, two with overweight and five with obesity (4 boys and 3 girls; 9.7 ± 0.8 years), performed two experimental sessions, one on land and another in the aquatic environment. In both conditions, each participant performed 15 repetitions of the stationary running exercise at three different cadences (60, 80, and 100 b min−1) in a randomized order. Their apparent weight was reduced by 72.1 ± 10.4% on average at the xiphoid process depth. The peak Fz, impulse, and loading rate were lower in the aquatic environment than on land (p < 0.001). Peak Fz was also lower at 80 b min−1 compared to 100 b min−1 (p = 0.005) and loading rate was higher at 100 b min−1 compared to 80 b min−1 (p = 0.003) and 60 b min−1 (p < 0.001) in the aquatic environment, whereas impulse was significantly reduced (p < 0.001) with the increasing cadence in both environments. It can be concluded that the aquatic environment reduces all the Fz outcomes investigated during stationary running and that exercise intensity seems to influence all these outcomes in the aquatic environment.


Author(s):  
Krithika Swaminathan ◽  
Sungwoo Park ◽  
Fouzia Raza ◽  
Franchino Porciuncula ◽  
Sangjun Lee ◽  
...  

Abstract Background Ankle-targeting resistance training for improving plantarflexion function during walking increases rehabilitation intensity, an important factor for motor recovery after stroke. However, understanding of the effects of resisting plantarflexion during stance on joint kinetics and muscle activity—key outcomes in evaluating its potential value in rehabilitation—remains limited. This initial study uses a unilateral exosuit that resists plantarflexion during mid-late stance in unimpaired individuals to test the hypotheses that when plantarflexion is resisted, individuals would (1) increase plantarflexor ankle torque and muscle activity locally at the resisted ipsilateral ankle, but (2) at higher forces, exhibit a generalized response that also uses the unresisted joints and limb. Further, we expected (3) short-term retention into gait immediately after removal of resistance. Methods Ten healthy young adults walked at 1.25 m s−1 for four 10-min discrete bouts, each comprising baseline, exposure to active exosuit-applied resistance, and post-active sections. In each bout, a different force magnitude was applied based on individual baseline ankle torques. The peak resistance torque applied by the exosuit was 0.13 ± 0.01, 0.19 ± 0.01, 0.26 ± 0.02, and 0.32 ± 0.02 N m kg−1, in the LOW, MED, HIGH, and MAX bouts, respectively. Results (1) Across all bouts, participants increased peak ipsilateral biological ankle torque by 0.13–0.25 N m kg−1 (p < 0.001) during exosuit-applied resistance compared to corresponding baselines. Additionally, ipsilateral soleus activity during stance increased by 5.4–11.3% (p < 0.05) in all but the LOW bout. (2) In the HIGH and MAX bouts, vertical ground reaction force decreased on the ipsilateral limb while increasing on the contralateral limb (p < 0.01). Secondary analysis found that the force magnitude that maximized increases in biological ankle torque without significant changes in limb loading varied by subject. (3) Finally, peak ipsilateral plantarflexion angle increased significantly during post-exposure in the intermediate HIGH resistance bout (p < 0.05), which corresponded to the greatest average increase in soleus activity (p > 0.10). Conclusions Targeted resistance of ankle plantarflexion during stance by an exosuit consistently increased local ipsilateral plantarflexor effort during active resistance, but force magnitude will be an important parameter to tune for minimizing the involvement of the unresisted joints and limb during training.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zehao Tong ◽  
Feng Zhai ◽  
Hang Xu ◽  
Wenjia Chen ◽  
Jiesheng Cui

Introduction. This study finds the lower limbs’ reactive strength index and biomechanical parameters on variable heights. Objective. This research aims to reveal the effects of drop height on lower limbs’ reactive strength index and biomechanical parameters. Methods. Two AMTI force platforms and Vicon motion capture system were used to collect kinematic and dynamic signals of the lower limbs. Results. The drop height had significant effects on peak vertical ground reaction force and peak vertical ground reaction force in the extension phase, lower limbs’ support moment, eccentric power of the hip joint, eccentric power of the knee joint, eccentric power of the ankle joint, and concentric power of the hip joint. The drop height had no significant effects on the reactive strength index. Reactive strength index (RSI) had no significant correlations with the personal best of high jumpers. The optimal loading height for the maximum reactive strength index was 0.45 m. Conclusion. The optimal loading height for the reactive strength index can be used for explosive power training and lower extremity injury prevention.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Cherice N. Hill ◽  
M’Lindsey Romero ◽  
Mark Rogers ◽  
Robin M. Queen ◽  
Per Gunnar Brolinson

Abstract Context Movement and loading asymmetry are associated with an increased risk of musculoskeletal injury, disease progression, and suboptimal recovery. Osteopathic structural screening can be utilized to determine areas of somatic dysfunction that could contribute to movement and loading asymmetry. Osteopathic manipulation treatments (OMTs) targeting identified somatic dysfunctions can correct structural asymmetries and malalignment, restoring the ability for proper compensation of stresses throughout the body. Little is currently known about the ability for OMTs to reduce gait asymmetries, thereby reducing the risk of injury, accelerated disease progression, and suboptimal recovery. Objectives To demonstrate whether osteopathic screening and treatment could alter movement and loading asymmetry during treadmill walking. Methods Forty-two healthy adults (20 males, 22 females) between the ages of 18 and 35 were recruited for this prospective intervention. Standardized osteopathic screening exams were completed by a single physician for each participant, and osteopathic manipulation was performed targeting somatic dysfunctions identified in the screening exam. Three-dimensional (3-D) biomechanical assessments, including the collection of motion capture and force plate data, were performed prior to and following osteopathic manipulation to quantify gait mechanics. Motion capture and loading data were processed utilizing Qualisys Track Manager and Visual 3D software, respectively. Asymmetry in the following temporal, kinetic, and kinematic measures was quantified utilizing a limb symmetry index (LSI): peak vertical ground reaction force, the impulse of the vertical ground reaction force, peak knee flexion angle, step length, stride length, and stance time. A 2-way repeated-measures analysis of variance model was utilized to evaluate the effects of time (pre/post manipulation) and sex (male/female) on each measure of gait asymmetry. Results Gait asymmetry in the peak vertical ground reaction force (−0.6%, p=0.025) and the impulse of the vertical ground reaction force (−0.3%, p=0.026) was reduced in males following osteopathic manipulation. There was no difference in gait asymmetry between time points in females. Osteopathic manipulation did not impact asymmetry in peak knee flexion angle, step length, stride length, or stance time. Among the participants, 59.5% (25) followed the common compensatory pattern, whereas 40.5% (17) followed the uncommon compensatory pattern. One third (33.3%, 14) of the participants showed decompensation at the occipitoatlantal (OA) junction, whereas 26.2% (11), one third (33.3%, 14), and 26.2% (11) showed decompensation at the cervicothoracic (CT), thoracolumbar (TL), and lumbosacral (LS) junctions, respectively. Somatic dysfunction at the sacrum, L5, right innominate, and left innominate occurred in 88.1% (37), 69.0% (29), 97.6% (41), and 97.6% (41) of the participants, respectively. Conclusions Correcting somatic dysfunction can influence gait asymmetry in males; the sex-specificity of the observed effects of osteopathic manipulation on gait asymmetry is worthy of further investigation. Osteopathic structural examinations and treatment of somatic dysfunctions may improve gait symmetry even in asymptomatic individuals. These findings encourage larger-scale investigations on the use of OMT to optimize gait, prevent injury and the progression of disease, and aid in recovery after surgery.


2021 ◽  
Author(s):  
Jan Plesek ◽  
Joseph Hamill ◽  
Denisa Blaschova ◽  
Julia Freedman Silvernail ◽  
Daniel Jandacka

Abstract Background Previous research indicated that running barefoot or in minimalist shoes led to lower impact loading in an adolescent and adult population. Running as fundamental locomotor skill significantly develops during early childhood (preschool age). However, no study has focused on effect of footwear condition on lower limb impact loading during running in this age. Therefore, the purpose of this study was to assess effect of footwear conditions (barefoot, minimalist and standard running shoes) on running impact loading in the preschool years. Methods Fourty-eight habitually shod preschool children were divided into 4 age groups. Children performed simple running game in 3 different footwear conditions (random counter-balanced order), 3-dimensional biomechanical analysis were carried out during overground running. The key dependent variables included vertical ground reaction force (VGRF) and vertical instantaneous loading rate (VILR). Statistical parametric mapping was performed to reveal possible differences in VGRF and one-way repeated measures ANOVA in VILR. Results Three-year-old children displayed significantly lower impact peak of VGRF in barefoot condition compared to minimalist (3-7% stance, P = 0.012) and standard running shoes (7-11% stance, P = 0.009). Furthermore, in 3-year-old in minimalist shoes had higher loading than in standard running shoes (0-4% stance, P = 0.007). There were also differences in VILR, where 3-year-old had lower loading in barefoot than in minimalist (P = 0.010, d = 1.19) or standard running shoes (P = 0.045, d = 0.98). No differences were found in older children. Conclusion Running in minimalist shoes did not imitate barefoot running and did not lower impact forces compared to standard running shoes in 3-year-old children. On the contrary, increased loading was observed in minimalist shoes in early running developmental stages. Professionals who work with children should consider effect of minimalist shoes on impact loading (running on hard surfaces).


Author(s):  
Marion Cossin ◽  
Annie Ross ◽  
François Prince

Korean teeterboard is one of the most physically and technically demanding circus disciplines. Two performers take turns jumping vertically and land with high impact. The aims of this study were to (1) compare the stiffness across three different teeterboards, and (2) compare Peak Landing Force (PLF) and Maximal Loading Rate (MLR) of four acrobats performing jumps from three teeterboards using four landing techniques (normal, smooth, straight legs, and empty board). Pressure sensors were used to determine recorded forces under the feet, while Boosted Regression Trees (BRT) was used to analyze factors contributing to PLF and MLR. Standard static loading protocol was used to estimate teeterboard stiffness. PLF and MLR increased with jump height. PLF and MLR were reached when landing on the teeterboard with the highest stiffness. The “normal” and “straight legs” landing techniques were associated with higher PLF and MLR. The BRT model was able to associate both PLF and MLR with jump height, participant, teeterboard, and landing technique factors. PLF reached 13.5 times the body weight when landing on the stiffer teeterboard using the straight legs technique. Trainers should be aware of the injury risk to teeterboard acrobats during landing.


Author(s):  
Aurélien Patoz ◽  
Thibault Lussiana ◽  
Bastiaan Breine ◽  
Cyrille Gindre ◽  
Davide Malatesta

Effective contact (tce) and flight (tfe) times, instead of ground contact (tc) and flight (tf) times, are usually collected outside the laboratory using inertial sensors. Unfortunately, tce and tfe cannot be related to tc and tf because the exact shape of vertical ground reaction force is unknown. However, using a sine wave approximation for vertical force, tce and tc as well as tfe and tf could be related. Indeed, under this approximation, a transcendental equation was obtained and solved numerically over a tce x tfe grid. Then, a multivariate polynomial regression was applied to the numerical outcome. In order to reach a root-mean-square error of 0.5 ms, the final model was given by an eighth-order polynomial. As a direct application, this model was applied to experimentally measured tce values. Then, reconstructed tc (using the model) was compared to corresponding experimental ground truth. A systematic bias of 35 ms was depicted, demonstrating that ground truth tc values were larger than reconstructed ones. Nonetheless, error in the reconstruction of tc from tce was coming from the sine wave approximation, while the polynomial regression did not introduce further error. The presented model could be added to algorithms within sports watches to provide robust estimations of tc and tf in real time, which would allow coaches and practitioners to better evaluate running performance and to prevent running-related injuries.


2021 ◽  
Vol 80 (1) ◽  
pp. 19-27
Author(s):  
Alfonso Vargas-Macías ◽  
Irene Baena-Chicón ◽  
Joanna Gorwa ◽  
Robert A. Michnik ◽  
Katarzyna Nowakowska-Lipiec ◽  
...  

Abstract Footwork is one of the basic features of flamenco dancing and is performed in traditional high-heeled shoes. The purpose of this study was to analyse the mechanical profile of flamenco dancing in terms of vertical ground reaction force, and knee joint kinematics of the supporting limb in footwork technique in order to understand causes which predispose injuries derived from the practice of flamenco dancing. The participant in our study was a professional female flamenco dancer (34 years, 58 kg, 1.65 m) who performed the ZAP 3 test, a sequence of single strikes of the feet performed continuously for 15 s. 3D lower extremity kinematic data were collected using a five-camera motion analysis system (Vicon; Oxford Metrics Ltd., Oxford, UK). Ground reaction forces were recorded using a Kistler force plate. Our analysis was based on 30 cycles of each lower limb consisting of 177 footwork steps. The vertical component of the ground reaction force did not reveal any significant differences between the left and the right limb. The most dynamic strike was provided by the heel (twice the participant's body weight). The mean angular displacement of the supporting limb’s knee was ~27°. Results reveal that these impacts could make the knee joint more prone to injuries.


Sign in / Sign up

Export Citation Format

Share Document