Solid-electrolyte-aided study of hydrogen oxidation on nickel

1985 ◽  
Vol 93 (2) ◽  
pp. 417-429 ◽  
Author(s):  
C SARANTEAS
2016 ◽  
Vol 5 (2) ◽  
pp. 319-324 ◽  
Author(s):  
Matthias Schelter ◽  
Jens Zosel ◽  
Wolfram Oelßner ◽  
Ulrich Guth ◽  
Michael Mertig

Abstract. The operation principle of a commercially available solid electrolyte sensor was modified with respect to applications in flowing gaseous mixtures containing H2 and O2. For this purpose the generally applied coulometric or potentiometric operation mode was replaced by cyclic voltammetry. By varying the sensor temperature, electrode area and potential scan rate, the conditions for the characteristic peak formation for every gas component were determined. While hydrogen oxidation peaks arise at potential scan rates up to 100 mV s−1, oxygen reduction peaks develop between 200 and 1000 mV s−1. A linear relationship between peak area/peak height and concentration was found at concentrations ϕ (H2) < 100 vol. ppm and ϕ (O2) ≤ 500 vol. ppm. It could be demonstrated that hydrogen can be measured selectively at catalytically highly active Pt electrodes even in gas mixtures with comparably high oxygen concentrations by using cyclic voltammetry.


2010 ◽  
Vol 181 (25-26) ◽  
pp. 1170-1177 ◽  
Author(s):  
Manga Venkateswara Rao ◽  
Juergen Fleig ◽  
Matvei Zinkevich ◽  
Fritz Aldinger

The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


2020 ◽  
Vol 140 (11) ◽  
pp. 305-308
Author(s):  
Tsuyoshi Sakai ◽  
Satoko Takase ◽  
Youichi Shimizu
Keyword(s):  

2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


Sign in / Sign up

Export Citation Format

Share Document