alumina membranes
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 55)

H-INDEX

54
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 869
Author(s):  
Bernardo Patella ◽  
Salvatore Piazza ◽  
Carmelo Sunseri ◽  
Rosalinda Inguanta

The great success of anodic alumina membranes is due to their morphological features coupled to both thermal and chemical stability. The electrochemical fabrication allows accurate control of the porous structure: in fact, the membrane morphological characteristics (pore length, pore diameter and cell density) can be controlled by adjusting the anodizing parameters (bath, temperature, voltage and time). This article deals with both the fabrication and use of anodic alumina membranes. In particular, we will show the specific role of the addition of aluminum ions to phosphoric acid-based anodizing solution in modifying the morphology of anodic alumina membranes. Anodic alumina membranes were obtained at −1 °C in aqueous solutions of 0.4 M H3PO4 added with different amounts of Al(OH)3. For sake of completeness, the formation of PAA in pure 0.4 M H3PO4 in otherwise identical conditions was also investigated. We found that the presence of Al(OH)3 in solution highly affects the morphology of the porous layer. In particular, at high Al(OH)3 concentration (close to saturation) more compact porous layers were formed with narrow pores separated by thick oxide. The increase in the electric charge from 20 to 160 C cm−2 also contributes to modifying the morphology of porous oxide. The obtained anodic alumina membranes were used as a template to fabricate a regular array of PdCo alloy nanowires that is a valid alternative to Pt for hydrogen evolution reaction. The PdCo alloy was obtained by electrodeposition and we found that the composition of the nanowires depends on the concentration of two metals in the deposition solution.


Author(s):  
Екатерина Николаевна Муратова

Изучение оптических свойств наноразмерных мембран пористого анодного оксида алюминия позволяет значительно расширить области применения данного материала. В работе представлены результаты тепловизионных исследований мембран пористого анодного оксида алюминия с различными структурными параметрами. Построены профили распределения температуры для мембран, полученных в различных электролитах на основе серной, щавелевой и ортофосфорной кислотах. Установлено, что экранирование ИК излучения сильнее (примерно на 30%) проявляется у мембран с меньшим диаметром пор d ≈ 20 нм по сравнению с мембранами, у которых d ≈ 200 нм. Это связано с рассеиванием теплового излучения на неоднородностях структуры, которых значительно больше в мембранах пористого анодного оксида алюминия, полученных на серной кислоте. В качестве источников неоднородности выступают поры малого диаметра, недотравленные области и дефекты. Также, за счет повышенной активности серной кислоты по сравнению с другими используемыми кислотами большее количество анионов встраивается в структуру образца. Study of optical properties of nanoscale membranes of porous anodic alumina can significantly expand the scope of this material. The paper presents the results of thermal imaging studies of porous anodic alumina membranes with various structural parameters. Temperature distribution profiles for membranes obtained in various electrolytes based on sulfuric, oxalic and orthophosphoric acids have been constructed. It was found that the shielding of IR radiation is more pronounced (approximately 30 %) in membranes with a smaller pore diameter d ≈ 20 nm compared to membranes with a larger pore diameter d ≈ 200 nm. This is due to the scattering of thermal radiation on structural inhomogeneities, which are much higher in porous anodic alumina membranes obtained with sulfuric acid. Small-diameter pores, under-etched areas and defects act as sources of inhomogeneity. Also, due to the increased activity of sulfuric acid in comparison with other acids used, more anions are incorporated into the structure of the sample.


Author(s):  
Nikos Kyriakou ◽  
Louis Winnubst ◽  
Martin Drobek ◽  
Sissi de Beer ◽  
Arian Nijmeijer ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sangeeta Rout ◽  
Vanessa N. Peters ◽  
Sangram K. Pradhan ◽  
Carl E. Bonner ◽  
Mikhail A. Noginov

Abstract We have grown arrays of silver nanowires in pores of anodic alumina membranes (metamaterials with hyperbolic dispersion at λ ≥ 615 nm), spin coated them with the dye-doped polymer (HITC:PMMA), and studied the rates of radiative and nonradiative relaxation as well as the concentration quenching (Förster energy transfer to acceptors). The results were compared to those obtained on top of planar Ag films and glass (control samples). The strong spatial inhomogeneity of emission kinetics recorded in different spots across the sample and strong inhibition of the concentration quenching in arrays of Ag nanowires are among the most significant findings of this study.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2729
Author(s):  
Sofia Caspani ◽  
Suellen Moraes ◽  
David Navas ◽  
Mariana P. Proenca ◽  
Ricardo Magalhães ◽  
...  

Multi-segmented bilayered Fe/Cu nanowires have been fabricated through the electrodeposition in porous anodic alumina membranes. We have assessed, with the support of micromagnetic simulations, the dependence of fabricated nanostructures’ magnetic properties either on the number of Fe/Cu bilayers or on the length of the magnetic layers, by fixing both the nonmagnetic segment length and the wire diameter. The magnetic reversal, in the segmented Fe nanowires (NWs) with a 300 nm length, occurs through the nucleation and propagation of a vortex domain wall (V-DW) from the extremities of each segment. By increasing the number of bilayers, the coercive field progressively increases due to the small magnetostatic coupling between Fe segments, but the coercivity found in an Fe continuous nanowire is not reached, since the interactions between layers is limited by the Cu separation. On the other hand, Fe segments 30 nm in length have exhibited a vortex configuration, with around 60% of the magnetization pointing parallel to the wires' long axis, which is equivalent to an isolated Fe nanodisc. By increasing the Fe segment length, a magnetic reversal occurred through the nucleation and propagation of a V-DW from the extremities of each segment, similar to what happens in a long cylindrical Fe nanowire. The particular case of the Fe/Cu bilayered nanowires with Fe segments 20 nm in length revealed a magnetization oriented in opposite directions, forming a synthetic antiferromagnetic system with coercivity and remanence values close to zero.


Author(s):  
Ilya I. Ryzhkov ◽  
Ivan A. Kharchenko ◽  
Elena V. Mikhlina ◽  
Andrey V. Minakov ◽  
Dmitry V. Guzei ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sangeeta Rout ◽  
Samantha R. Koutsares ◽  
Devon Courtwright ◽  
Ezekiel Mills ◽  
Ayanna Shorter ◽  
...  

Abstract We have studied the dependence of concentration quenching of luminescence (donor–acceptor energy transfer) on the thickness d of dye-doped polymeric films (HITC:PMMA) and found its strong inhibition at small values of d. This phenomenon is tentatively explained by a limited number of acceptors, which donors’ excitation can reach in thin samples, if the film’s thickness is comparable to the diffusion length of the energy transfer. The latter mechanism, along with effective reduction of the dye concentration, is responsible for an inhibition of the concentration quenching of dye molecules impregnating porous alumina membranes. The elongation of emission kinetics in thick (≥3 μm) HITC:PMMA films is cautiously attributed to the samples’ crystallinity.


2021 ◽  
Vol 13 (14) ◽  
pp. 7593
Author(s):  
Farooq Khan Niazi ◽  
Malik Adeel Umer ◽  
Ashfaq Ahmed ◽  
Muhammad Arslan Hafeez ◽  
Zafar Khan ◽  
...  

Ultrafiltration membranes offer a progressive and efficient means to filter out various process fluids. The prime factor influencing ultrafiltration to a great extent is the porosity of the membranes employed. Regarding membrane development, alumina membranes are extensively studied due to their uniform porosity and mechanical strength. The present research work is specifically aimed towards the investigation of nanoporous alumina membranes, as a function of sintering parameters, on ultrafiltration performance. Alumina membranes are fabricated by sintering at various temperatures ranging from 1200–1300 °C for different holding times between 5–15 h. The morphological analysis, conducted using Scanning electron microscopy (SEM), revealed a homogeneous distribution of pores throughout the surface and cross-section of the membranes developed. It was observed that an increase in the sintering temperature and time resulted in a gradual decrease in the average pore size. A sample with an optimal pore size of 73.65 nm achieved after sintering at 1250 °C for 15 h, was used for the evaluation of ultrafiltration performance. However, the best mechanical strength and highest stress-bearing ability were exhibited by the sample sintered at 1300 °C for 5 h, whereas the sample sintered at 1250 °C for 5 h displayed the highest strain in terms of compression. The selected alumina membrane sample demonstrated excellent performance in the ultrafiltration of sugarcane juice, compared to the other process liquids.


Sign in / Sign up

Export Citation Format

Share Document