Latex particle size. VI. Latex particle size by dark field microscopy, a light scattering method

1976 ◽  
Vol 55 (1) ◽  
pp. 170-180 ◽  
Author(s):  
J.A Davidson ◽  
H.S Haller
2000 ◽  
Author(s):  
Huijie Huang ◽  
Lixin Zou ◽  
Longlong Du ◽  
Yongkai Zhao ◽  
Dunwu Lu

2020 ◽  
Vol 69 (9-10) ◽  
pp. 473-479
Author(s):  
Jelena Jakić ◽  
Ivona Horvat ◽  
Vanja Martinac ◽  
Dražan Jozić ◽  
Miroslav Labor

High purity magnesium hydroxide has been synthesised from seawater with the addition of dolomite lime as reagent. High intensity ultrasound-assisted crystallization of magnesium hydroxide was carried out during precipitation with the intention to obtain fine particles of Mg(OH)2 as well as to prevent their agglomeration. Investigations were conducted on magnesium hydroxide samples in the form of sludge and voluminous powder. The composition, morphology, and properties of the product were determined by chemical, XRD, FTIR, and SEM/EDS analysis. The particle size distribution was detected by the laser light scattering method. The results showed that the mean particle size of magnesium hydroxide sludge was 5.75 µm, while voluminous powder was 7.58 µm. The morphology of magnesium hydroxide voluminous powder was in the form of aggregated filamentous (up to 300 nm in size) or flake structures.


Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12805-12812 ◽  
Author(s):  
Jun Zhou ◽  
Tong Yang ◽  
Wei He ◽  
Zi Yu Pan ◽  
Cheng Zhi Huang

A galvanic exchange (GE) process was visually monitored in real-time using light scattering dark-field microscopy imaging, through which the reaction kinetics of the GE process was visualized and the silver removal rate and gold deposition rate on single nanoparticles were revealed.


2006 ◽  
Author(s):  
Vladimir A. Bogatyrev ◽  
Lev A. Dykman ◽  
Anna V. Alekseeva ◽  
Boris N. Khlebtsov ◽  
Anna P. Novikova ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (37) ◽  
pp. 15209-15213 ◽  
Author(s):  
Yi Wang ◽  
Hong Yan Zou ◽  
Cheng Zhi Huang

Oxidative etching on single Ag nanocubes was monitored in real-time mode through light-scattering dark-field microscopy imaging.


Sign in / Sign up

Export Citation Format

Share Document