Interfacial viscoelastic response to oscillatory shear deformations

1987 ◽  
Vol 119 (2) ◽  
pp. 303-314 ◽  
Author(s):  
J Prieditis ◽  
N.R Amundson ◽  
R.W Flumerfelt
Author(s):  
Saqib Gulzar ◽  
B. Shane Underwood

Agencies have been increasing their use of polymer modified asphalt binders in recent years to address performance issues and lengthen the useful life of their pavements. When deployed these materials likely experience strain levels exceeding their linear viscoelastic (LVE) limits. The same situation exists in non-polymer modified asphalt binders as well, but the effect may be more pronounced in polymer modified systems because of their bi-phasic nature. In this study, terminally blended crumb rubber (CR-TB) modified asphalt is studied to understand and quantify the nonlinear viscoelastic response under large strains. The CR-TB binders are extensively used in pavements subjected to high vehicular loads and extreme climatic conditions; thereby, their response under large strains becomes more critical. The current standard characterization techniques are based on LVE response using small amplitude oscillatory shear rheology only and do not consider the behavior of binders under large strains. In this study, large amplitude oscillatory shear (LAOS) rheology is used as a framework to more thoroughly investigate the complete response of the CR-TB modified asphalt binder under large strains at 30°C, 40°C, 50°C, and 60°C and at the frequencies of 0.5, 1, and 5 Hz. The LAOS response is analyzed using Fourier-transform rheology and the orthogonal stress decomposition method involving Chebyshev polynomial representation. It is found that nonlinearity manifests greatly in this study material as strain levels increase and frequencies decrease. The relative nonlinearity increases with increasing strain amplitude and is more significant towards lower end of the tested temperature range. The CR-TB binder shows strain-stiffening/softening and shear-thinning/thickening behavior depending upon a specific temperature, strain level, and frequency.


2011 ◽  
Vol 166 (7-8) ◽  
pp. 373-385 ◽  
Author(s):  
P. Kuzhir ◽  
A. Gómez-Ramírez ◽  
M.T. López-López ◽  
G. Bossis ◽  
A.Yu. Zubarev

1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Sign in / Sign up

Export Citation Format

Share Document