Pitch angle diffusion of trapped particles in the presence of a loss cone: Calculating the distribution of particles precipitating from the earth's radiation belts

1979 ◽  
Vol 31 (3) ◽  
pp. 301-312 ◽  
Author(s):  
G.T Davidson
1999 ◽  
Vol 17 (6) ◽  
pp. 723-733 ◽  
Author(s):  
W. N. Spjeldvik ◽  
T. A. Fritz ◽  
J. Chen ◽  
R. B. Sheldon

Abstract. New observations of energetic helium ion fluxes in the Earth's radiation belts have been obtained with the CAMMICE/HIT instrument on the ISTP/GGS POLAR spacecraft during the extended geomagnetically low activity period April through October 1996. POLAR executes a high inclination trajectory that crosses over both polar cap regions and passes over the geomagnetic equator in the heart of the radiation belts. The latter attribute makes possible direct observations of nearly the full equatorial helium ion pitch angle distributions in the heart of the Earth's radiation belt region. Additionally, the spacecraft often re-encounters the same geomagnetic flux tube at a substantially off-equatorial location within a few tens of minutes prior to or after the equatorial crossing. This makes both the equatorial pitch angle distribution and an expanded view of the local off-equatorial pitch angle distribution observable. The orbit of POLAR also permitted observations to be made in conjugate magnetic local time sectors over the course of the same day, and this afforded direct comparison of observations on diametrically opposite locations in the Earth's radiation belt region at closely spaced times. Results from four helium ion data channels covering ion kinetic energies from 520 to 8200 KeV show that the distributions display trapped particle characteristics with angular flux peaks for equatorially mirroring particles as one might reasonably expect. However, the helium ion pitch angle distributions generally flattened out for equatorial pitch angles below about 45°. Significant and systematic helium ion anisotropy difference at conjugate magnetic local time were also observed, and we report quiet time azimuthal variations of the anisotropy index.Key words. Magnetospheric physics (energetic particles · trapped; magnetospheric configuration and dynamics; plasmasphere)


2015 ◽  
Vol 22 (6) ◽  
pp. 062903 ◽  
Author(s):  
C.-R. Choi ◽  
M.-H. Woo ◽  
K. Dokgo ◽  
E.-J. Choi ◽  
K.-W. Min ◽  
...  

2020 ◽  
Author(s):  
Adnane Osmane

<p><em>In situ</em> measurements of electron scale fluctuations by the Van Allen Probes and MMS have demonstrated the ubiquitous occurrence of phase-space holes and various kinetic nonlinear structures in the Earth's magnetosphere. However it remains an open question whether phase-space holes have to be incorporated into global magnetospheric models describing the energisation and acceleration of electrons. In this communication we will review current wave-particle models of electron phase-space holes interacting with energetic electrons (e.g. >1 keV in the Earth's radiation belts)  and present new theoretical results showing that finite correlation times of phase-space holes results in enhanced pitch-angle scattering. The pitch-angle scattering by phase-space holes is shown to be on par with that produced by chorus waves, and in some instances outgrows the chorus contribution. </p><p> </p>


2019 ◽  
Author(s):  
Seth G. Claudepierre ◽  
Qianli Ma ◽  
Jacob Bortnik ◽  
Thomas Paul O'Brien ◽  
Joseph F. Fennell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document