earth’s radiation belt
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 13 (17) ◽  
pp. 3347
Author(s):  
Xiaojing Sun ◽  
Ruilin Lin ◽  
Siqing Liu ◽  
Xinran He ◽  
Liqin Shi ◽  
...  

The energetic electrons in the Earth’s radiation belt, known as “killer electrons”, are one of the crucial factors for the safety of geostationary satellites. Geostationary satellites at different longitudes encounter different energetic electron environments. However, organizations of space weather prediction usually only display the real-time ≥2 MeV electron fluxes and the predictions of ≥2 MeV electron fluxes or daily fluences within the next 1–3 days by models at one location in GEO orbit. In this study, the relationship of ≥2 MeV electron fluxes at different longitudes is investigated based on observations from GOES satellites, and the relevant models are developed. Based on the observations from GOES-10 and GOES-12 after calibration verification, the ratios of the ≥2 MeV electron daily fluences at 135° W to those at 75° W are mainly in the range from 1.0 to 4.0, with an average of 1.92. The models with various combinations of two or three input parameters are developed by the fully connected neural network for the relationship between ≥2 MeV electron fluxes at 135° W and 75° W in GEO orbit. According to the prediction efficiency (PE), the model only using log10 (fluxes) and MLT from GOES-10 (135° W), whose PE can reach 0.920, has the best performance to predict ≥2 MeV electron fluxes at the locations of GOES-12 (75° W). Its PE is larger than that (0.882) of the linear model using log10 (fluxes four hours ahead) from GOES-10 (135° W). We also develop models for the relationship between ≥2 MeV electron fluxes at 75° W and at variable longitudes between 95.8° W and 114.9° W in GEO orbit by the fully connected neural network. The PE values of these models are larger than 0.90. These models realize the predictions of ≥2 MeV electron fluxes at arbitrary longitude between 95.8° W and 114.9° W in GEO orbit.


2021 ◽  
Author(s):  
Eldho Midhun Babu ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Ville Maliniemi ◽  
Josephine Alessandra Salice ◽  
...  

<p>Energetic electron precipitation (EEP) from the plasma sheet and the radiation belts, can collide with gases in the atmosphere and deposit their energy. EEP increase the production of NOx and HOx, which will catalytically destroy stratospheric ozone, an important element of atmospheric dynamics. Therefore, measurement of latitudinal extent of the precipitation boundaries is important in quantifying atmospheric effects of Sun-Earth interaction and threats to spacecrafts and astronauts in the Earth's radiation belt.<br>This study uses measurements by MEPED detectors of six NOAA/POES and EUMETSAT/METOP satellites from 2004 to 2014 to determine the latitudinal boundaries of EEP and its variability with geomagnetic activity and solar wind drivers. Variation of the boundaries with respect to different particle energies and magnetic local time is studied. Regression analyses are applied to determine the best predictor variable based on solar wind parameters and geomagnetic indices. The result will be a key element for constructing a model of EEP variability to be applied in atmosphere climate models.</p>


2021 ◽  
Vol 39 (1) ◽  
pp. 181-187
Author(s):  
Rajkumar Hajra

Abstract. Long-term variations in the relativistic (∼MeV) electrons in the Earth's radiation belt are explored to study seasonal features of the electrons. An L-shell dependence of the seasonal variations in the electrons is reported for the first time. A clear ∼6 month periodicity, representing one/two peaks per year, is identified for 1.5–6.0 MeV electron fluxes in the L shells between ∼3.0 and ∼5.0. The relativistic electron flux variation is strongest during solar cycle descending to minimum phases, with weaker/no variations during solar maximum. If two peaks per year occur, they are largely asymmetric in amplitude. The peaks essentially do not have an equinoctial dependence. Sometimes the peaks are shifted to solstices, and sometimes only one annual peak is observed. No such seasonal features are prominent for L<3.0 and L>5.0. The results imply varying solar/interplanetary drivers of the radiation belt electrons at different L shells. This has a potential impact on the modeling of the space environment. Plausible solar drivers are discussed.


Author(s):  
H. S. Yakushevich ◽  
Y. V. Bogatyrev ◽  
N. A. Vasilenkov ◽  
S. S. Grabchikov ◽  
S. B. Lastovskii ◽  
...  

For decreasing the radiation effects of the cosmic environment on the electronic components of spacecraft, local protection shields are used. They are manufactured on the basis of materials with high density and large atomic numbers (tungsten, tantalum, the W-Cu composite etc.) and then integrated into the ceramic-and-metal package of electronic components with an insufficient level of radiation resistance. On the basis of the Monte Carlo approach we considered the methods of decreasing the level of the dose absorbed by the crystals of active elements if using the radiation shields based on the W-Cu composite in hybrid metal cases under the action of electrons of a circular orbit with an inclination angle of 30° and an altitude of 8000 km. The electron spectra at the maximum and minimum solar activity were obtained using OMERE 5.3 software. It was established that an increase in the mass thickness of the base and cover of cases with shields up to 1.67 g / cm2 makes it possible to reduce the dose load by 3.5–3.7 times at the minimum and by 3.9–4.1 times at the maximum of solar activity. The optimization of protection by lowering the upper layer of the W-Cu composite to the base to a height of 1.2 mm reduces the absorbed dose by 6.8–9.3 times at the minimum and by 7.6–10.7 times at the maximum solar activity.


Space Weather ◽  
2020 ◽  
Author(s):  
K. Yoshioka ◽  
Y. Miyoshi ◽  
S. Kurita ◽  
M. Teramoto ◽  
F. Tsuchiya ◽  
...  

2020 ◽  
Author(s):  
Rajkumar Hajra

Abstract. Long-term variations of the relativistic (~ MeV) electrons in the Earth's radiation belt are explored to study seasonal features of the electrons. An L-shell dependence of the seasonal variations of the electrons is revealed for the first time. A clear ~ 6-month periodicity is identified for 1.5–6.0 MeV electron fluxes in the L-shells between ~ 3.0 and ~ 5.0, representing two peaks per year. The two-peak variation is strong during solar cycle descending to minimum phases, with weaker/no variations during solar maximum. The peaks are largely asymmetric in amplitude. These are not essentially equinoctial: sometimes the peaks are shifted to solstices and sometimes one annual peak is only observed. No such seasonal features are prominent for L  5.0. The results imply varying solar/interplanetary drivers of the radiation belt electrons at different L-shells. This has a potential impact on the modeling of space environment. Plausible solar drivers are discussed.


Sign in / Sign up

Export Citation Format

Share Document