Inhibition of Na/Ca exchange in guinea pig heart sarcolemmal vessicles and mechanical responses by isolated atria and papillary muscles to “3′,4′ dichlorobenzamil” (DCB)P.K.S. Siegl, G.J. Kaczorowski, M.J. Trumble, E.J. Gragoe, Jr. Merck Institute for Therapeutic Research, West Point, PA 19486 and Rahway, NJ 07065, USA

1983 ◽  
Vol 15 ◽  
pp. 122-122
1991 ◽  
Vol 104 (4) ◽  
pp. 1019-1023 ◽  
Author(s):  
Ursula Ravens ◽  
Erich Wettwer ◽  
Thomas Pfeifer ◽  
Herbert Himmel ◽  
Benjamin Armah

2008 ◽  
Vol 294 (1) ◽  
pp. C106-C117 ◽  
Author(s):  
Fabien A. Faucher ◽  
François E. Gannier ◽  
Jacques M. Lignon ◽  
Pierre Cosnay ◽  
Claire O. Malécot

Although β2-adrenoceptors represent 15–25% of β-adrenoceptors in the guinea pig heart, their functionality is controversial. We assessed the inotropic effects of β2-adrenoceptor partial agonists in right papillary muscles. Salbutamol induced a small but significant concentration-dependent negative inotropic effect (NIE, −5% at 60 nM) followed by a moderate positive inotropic effect (+36% at 6 μM) due to activation of β1-adrenoceptors. In the presence of 4 μM atenolol, the concentration-dependent NIE (−12% at 6 μM) was biphasic, best described by a double logistic equation with respective EC50 values of 3 and ∼420 nM, and was insensitive to SR59230A. In muscles from pertussis toxin-treated guinea pigs, the salbutamol-induced positive inotropic effect was sensitive to low concentrations of ICI-118551 in an unusual manner. Experiments in reserpinized animals revealed the importance of the phosphorylation-dephosphorylation processes. PKA inhibition reduced and suppressed the effects obtained at low and high concentrations, respectively, indicating that its activation was a prerequisite to the NIE. The effect occurring at nanomolar concentrations depended upon PKA/phosphatidylinositol 3-kinase/cytosolic phospholipase A2 (cPLA2) activations leading to nitric oxide (NO) release via the arachidonic acid/cyclooxygenase pathway. NO release via PKA-dependent phosphorylation of the receptor was responsible for the inotropic effect observed at submicromolar concentrations, which is negatively controlled by cPLA2. The possibility that these effects are due to an equilibrium between different affinity states of the receptor (Gs/Gi coupled and Gi independent with different signaling pathways) that can be displaced by ICI-118551 is discussed. We conclude that β2-adrenoceptors are functional in guinea pig heart and can modulate the inotropic state.


Author(s):  
W. Allen Shannon ◽  
Hannah L. Wasserkrug ◽  
andArnold M. Seligman

The synthesis of a new substrate, p-N,N-dimethylamino-β-phenethylamine (DAPA)3 (Fig. 1) (1,2), and the testing of it as a possible substrate for tissue amine oxidase activity have resulted in the ultracytochemical localization of enzyme oxidase activity referred to as DAPA oxidase (DAPAO). DAPA was designed with the goal of providing an amine that would yield on oxidation a stronger reducing aldehyde than does tryptamine in the histochemical demonstration of monoamine oxidase (MAO) with tetrazolium salts.Ultracytochemical preparations of guinea pig heart, liver and kidney and rat heart and liver were studied. Guinea pig kidney, known to exhibit high levels of MAO, appeared the most reactive of the tissues studied. DAPAO reaction product appears primarily in mitochondrial outer compartments and cristae (Figs. 2-4). Reaction product is also localized in endoplasmic reticulum, cytoplasmic vacuoles and nuclear envelopes (Figs. 2 and 3) and in the sarcoplasmic reticulum of heart.


2002 ◽  
Vol 80 (6) ◽  
pp. 578-587 ◽  
Author(s):  
María de Jesús Gómez ◽  
Guy Rousseau ◽  
Réginald Nadeau ◽  
Roberto Berra ◽  
Gonzalo Flores ◽  
...  

Dopamine receptors include the D1- (D1 and D5 subtypes) and D2-like (D2, D3, and D4 subtypes) families. D1-like receptors are positively and D2-like receptors negatively coupled to the adenylyl cyclase. Dopamine D2-like (D4 subtype) receptors have been identified in human and rat hearts. However the presence of D2 and D3 receptor subtypes is unclear. Furthermore, their role in cardiac functions is unknown. By autoradiographic studies of guinea pig hearts, we identified D3 and D4 receptors, using the selective radioligands [3H]-7-OH-DPAT and [3H]emonapride (YM-09151-2 plus raclopride). Western blot analysis confirmed D3 and D4 receptors in the right and left ventricle of the same species. Selective agonists of D3 and D4 receptors (±)-7-OH-DPAT and PD 168 077 (10–9 to 10–5 M, respectively) induced a significant negative chronotropic and inotropic effect in the isolated guinea pig heart preparation. Negative inotropic effect induced by PD 168 077 was associated with an inhibition in cyclase activity. No changes in cyclase activity were found with (±)-7-OH-DPAT. The aim of this study is to support the presence of D3 and D4 receptors in the heart. Although our results suggest that D3 and D4 receptors are functionally active in the heart, we need additional information with an antagonist and an agonist of improved potency and selectivity to understand the respective roles of D3 and D4 receptors in the cardiac functions.Key words: Dopamine receptors (D2, D3, D4 subtypes), autoradiography, Western blot, cAMP, heart.


1988 ◽  
Vol 11 (5) ◽  
pp. 619-625 ◽  
Author(s):  
Noriaki Kondo ◽  
Shoji Shibata ◽  
Thomas E. Tenner ◽  
Peter K. Pang

1994 ◽  
Vol 3 (1) ◽  
pp. 45-51
Author(s):  
M. Gollasch ◽  
T. Kleppisch ◽  
D. Krautwurst ◽  
D. Lewinsohn ◽  
J. Hescheler

Platelet-activating factor (PAF) inhibits single inwardly rectifying K+channels in guinea-pig ventricular cells. There is currently little information as to the mechanism by which these channels are modulated. The effect of PAF on quasi steady-state inwardly rectifying K+currents (presumably of the IK1type) of auricular, atrial and ventricular cardiomyocytes from guinea-pig were studied. Applying the patch-clamp technique in the whole-cell configuration, PAF (10 nM) reduced the K+currents in all three cell types. The inhibitory effect of PAF occurred within seconds and was reversible upon wash-out. It was almost completely abolished by the PAF receptor antagonist BN 50730. Intracellular infusion of atrial cells with guanine 5′-(β-thio)diphosphate (GDPS) or pretreatment of cells with pertussis toxin abolished the PAF dependent reduction of the currents. Neither extracellularly applied isoproterenol nor intracellularly applied adenosine 3′,5′-cyclic monophosphate (cyclic AMP) attenuated the PAF effect. In multicellular preparations of auricles, PAF (10 nM) induced arrhythmias. The arrhythmogenic activity was also reduced by BN 50730. The data indicate that activated PAF receptors inhibit inwardly rectifying K+currents via a pertussis toxin sensitive G-protein without involvement of a cyclic AMP-dependent step. Since IK1is a major component in stabilizing the resting membrane potential, the observed inhibition of this type of channel could play an important role in PAF dependent arrhythmogenesis in guinea-pig heart.


Sign in / Sign up

Export Citation Format

Share Document