Reperfusion injury in the isolated rat heart: Role of resident cardiac mast cells

1989 ◽  
Vol 21 ◽  
pp. S153
Author(s):  
A KELLER
1988 ◽  
Vol 63 (6) ◽  
pp. 1044-1052 ◽  
Author(s):  
A M Keller ◽  
R M Clancy ◽  
M L Barr ◽  
C C Marboe ◽  
P J Cannon

2013 ◽  
Vol 61 (10) ◽  
pp. E217
Author(s):  
Jeong-Su Kim ◽  
Ju-Hyun Park ◽  
Kook-Jin Chun ◽  
Young-Ho Jang ◽  
June-Hong Kim ◽  
...  

2021 ◽  
Author(s):  
Vladimir Jakovljevic ◽  
Sergey Vorobyev ◽  
Sergey Bolevich ◽  
Elena Morozova ◽  
Stefani Bolevich ◽  
...  

Abstract The main goal of this study was to investigate the cardioprotective properties in terms of effects on cardiodynamics of perfluorocarbon emulsion in ex vivo-induced ischemic-reperfusion injury of an isolated rat heart. The first part of the study aims to determine the dose of 10% perfluoroemulsion (PFT) that will show the best cardioprotective effect in rats on ex vivo-induced ischemic / reperfusion injury of an isolated rat heart. Depending on whether the animals received saline or PFT, the animals were divided into a control or experimental group, and depending on the application of a dose (8, 12, 16 ml / kg body weight) of saline or PFT. At a dose of 8 ml / kg, the results indicate statistically significantly lower values ​​of the maximum pressure growth rate in the group treated with 10% PFT compared to the control group treated with saline at R5 and R25 points. At a dose of 12 ml / kg, the maximum left ventricular pressure growth rate differed statistically significantly in the PFT group, ie there was an increase in this parameter at points R25 and R30, and the minimum left ventricular pressure growth rate in R15-R30 compared to saline-treated group. At a dose of 16 ml / kg, PFT also had a statistically significant effect on the change in cardiodynamic parameters in an isolated rat heart organ. Based on all the above, we can conclude that Peftoran administered immediately before ischemia (1 hour) has less positive effects on myocardial function in a model of an isolated rat heart compared to earlier administration (10 and 20 hours). Also, the effects of 10% peftoran solution are more pronounced if there is a longer period of time from application to ischemia, ie immediate application of peftoran before ischemia (1 hour) gave the weakest effects on the change of cardiodynamics of isolated rat heart.


2014 ◽  
Vol 15 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Jing Hu ◽  
Zilin Li ◽  
Li-ting Xu ◽  
Ai-jun Sun ◽  
Xiao-yan Fu ◽  
...  

Drug Research ◽  
2018 ◽  
Vol 68 (05) ◽  
pp. 286-295
Author(s):  
Ademola Oyagbemi ◽  
Dirk Bester ◽  
Johan Esterhuyse ◽  
Ebenezer Farombi

Abstract Background The incidence of cardiovascular diseases and its associated complications have increased greatly in the past three decades. The purpose of this study was to evaluate the acute cardioprotective effects of Garcinia kola (GK) seed extract and Kolaviron (KV) and determine mechanisms of action involving RISK signalling pathways. Methods Male Wistar rats were used in this study. Hearts were excised and mounted on the Langendorff perfusion system. The control, group 1 was perfused with dimethyl sulfoxide (DMSO), group II with KV and group III with GK respectively. Western blot analyses were performed on frozen heart tissues. Results Isolated rat hearts perfused with KV and GK attenuated apoptotic pathways with significant reduction in p38 MAPK protein phosphorylation, as well as reduction in total caspase 3, cleaved caspase 3 (Asp 175) and PARP cleavage. KV and GK also down-regulated p-JNK1 (Tyr 185) and p-JNK 2 (Thr 183) protein expression at the 10 min reperfusion time ponit. Cardioprotection was achieved in part, by enhancement of the reperfusion injury signalling kinase (RISK) pathway; as evidenced by significant increases in protein expresion of Akt/PKB and p-Akt/PKB (Ser 473) in KV and GK respectively. Conclusions KV and GK supplementation led to significant increases in the expressions of survival proteins. It is noteworthy that both KV and GK supplementation offered cardioprotection in ischaemic/reperfusion injury rat heart model. In all, GK showed better cardioprotective effect that KV.


Life Sciences ◽  
2021 ◽  
Vol 264 ◽  
pp. 118659
Author(s):  
Maryam Rameshrad ◽  
Seyedeh Farzaneh Omidkhoda ◽  
Bibi Marjan Razavi ◽  
Hossein Hosseinzadeh

1993 ◽  
Vol 264 (3) ◽  
pp. H783-H790 ◽  
Author(s):  
C. Ibuki ◽  
D. J. Hearse ◽  
M. Avkiran

Transient (2 min) acidic (pH 6.6) reperfusion with low [HCO3-] solution suppresses reperfusion-induced ventricular fibrillation (VF) in the isolated rat heart. Using this preparation, we tested whether the effect was mediated by the high [H+] or the low [HCO3-] of perfusate. Left and right coronary beds were independently perfused with HCO3(-)-containing (25.0 mmol/l) solution at pH 7.4. Regional ischemia was then induced by stopping flow to the left coronary bed for 10 min. Hearts were subsequently assigned to four groups (n = 12 hearts/group), and the left coronary bed was reperfused with either HCO3(-)-containing (25.0 or 4.0 mmol/l) or HCO3(-)-free (5.0 mmol/l HEPES) solution, at pH 7.4 throughout (control reperfusion) or at pH 6.6 for the first 2 min and at pH 7.4 from 2 to 5 min (acidic reperfusion). Regardless of the buffer, controls exhibited a high (92 and 100%) incidence of VF; this was reduced to 42% in both of the acidic reperfusion groups (P < 0.05). There were no intergroup differences in heart rate, coronary flow, or size of ischemic zone. Thus high [H+], rather than low [HCO3-], appears to mediate the antifibrillatory effect of transient acidic reperfusion.


Sign in / Sign up

Export Citation Format

Share Document