Vibration characteristics of a clamped-free and clamped-ring-stiffened circular cylindrical shell

1971 ◽  
Vol 14 (4) ◽  
pp. 459-474 ◽  
Author(s):  
C.B. Sharma ◽  
D.J. Johns
Author(s):  
V. O¨zerciyes ◽  
U. Yuceoglu

The problem of “Free Vibrations Centrally and Non Centrally Stiffened Composite Shallow Cylindrical Shell Panels” are briefly considered and their vibration characteristics are compared, in detail, in terms of their natural frequencies and the corresponding mode shapes. First, the complete set of composite shallow cylindrical shell equations are reduced to a system of first order ordinary differential equations in “state-vector” form. Then, by making use of the “Modified Transfer Matrix Method”, the effects of the position and the width of the stiffening shell strip in the natural frequencies and the mode shapes of the panel system are plotted and compared. Some significant results of parametric studies and also the possibility of some kind of hit-and-run type of optimization are presented.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Min Fang ◽  
Xiang Zhu ◽  
Tianyun Li ◽  
Guanjun Zhang

A theoretical method is employed to study the free vibration characteristics of a finite ring-stiffened elliptic cylindrical shell. Vibration equations of the elliptic cylindrical shell are derived based on Flügge shell theory, and the effects of the ring stiffeners are evaluated via “smeared” stiffener theory whereby the properties of the stiffeners are averaged over the shell surface. The displacements of the shell are expanded in double Fourier series in the axial and circumferential directions, and the circumferential curvature is expanded in single Fourier series in the circumferential direction. The partial differential characteristic equations with variable coefficients are converted into a set of linear equations with constant coefficients which couple with each other about the circumferential modal parameters. Then, the natural frequencies of the finite ring-stiffened cylindrical shell are obtained. To verify the accuracy of the present method, the finite ring-stiffened elliptic cylindrical shell is degenerated into two models: one of which is a ring-stiffened circular cylindrical shell and the other of which is an elliptic cylindrical shell without ring stiffeners. The present results of the two degenerated shells show good agreements with available results from the literature. The effects of main parameters, including the ellipticity, the shell length ratio, the stiffener's interval, the stiffener's depth, and the stiffener's eccentricity, on the free vibration of the ring-stiffened elliptic cylindrical shell are examined in detail. The ellipticity makes the difference between the symmetric and antisymmetric modal frequencies of the shell. The stiffeners have a greater influence on the free vibration at relatively higher order circumferential modal parameters. The circumferential modal parameters corresponding to the fundamental frequency are affected by the ellipticity, shell length, stiffeners' interval, and depth. The eccentricity of the ring stiffeners has a weak effect on the vibration of the structure.


Sign in / Sign up

Export Citation Format

Share Document