Vibration characteristics of rotating functionally graded circular cylindrical shell with variable thickness under thermal environment

Author(s):  
Tran Huu Quoc ◽  
Duong Thanh Huan ◽  
Hoang Thu Phuong
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Muhmmad Nawaz Naeem ◽  
Shazia Kanwal ◽  
Abdul Ghafar Shah ◽  
Shahid Hussain Arshad ◽  
Tahir Mahmood

The vibration characteristics of ring stiffened cylindrical shells are analyzed. These shells are assumed to be structured from functionally graded materials (FGM) and are stiffened with isotropic rings. The problem is formulated by coupling the expressions for strain and kinetic energies of a circular cylindrical shell with those for rings. The Lagrangian function is framed by taking difference of strain and kinetic energies. The Rayleigh-Ritz approach is employed to obtain shell dynamical equations. The axial model dependence is approximated by characteristic beam functions that satisfy the boundary conditions. The validity and efficiency of the present technique are verified by comparisons of present results with the previous ones determined by other researchers.


2016 ◽  
Vol 27 (20) ◽  
pp. 2774-2794 ◽  
Author(s):  
Satyajit Panda

For improved flexibility and conformability of piezoelectric fiber–reinforced composite actuator, it is reconstructed in a recent study by the use of short piezoelectric fibers (short piezoelectric fiber–reinforced composite) instead of continuous fibers (continuous piezoelectric fiber–reinforced composite). This modification facilitates its application in short piezoelectric fiber–reinforced composite layer form instead of continuous piezoelectric fiber–reinforced composite patch form particularly in case of host structures with highly curved boundary surfaces. But the corresponding change in actuation capability is a major issue for potential application of short piezoelectric fiber–reinforced composite that is studied in this work through the control of vibration of a functionally graded circular cylindrical shell under thermal environment. First, an arrangement of continuous piezoelectric fiber–reinforced composite actuator patches over the host shell surface is presented with an objective of controlling all modes of vibration. Next, the use of short piezoelectric fiber–reinforced composite actuator layer for similar control activity is demonstrated through an arrangement of electrode patches over its surfaces. Subsequently, an electric potential function is assumed for the consideration of electrode patches and a geometrically nonlinear coupled thermo-electro-mechanical incremental finite element model of the harmonically excited overall functionally graded shell is developed. The numerical results reveal actuation capability of short piezoelectric fiber–reinforced composite actuator layer with reference to that of the existing continuous piezoelectric fiber–reinforced composite/monolithic piezoelectric actuator patches. The effects of temperature, size of electrode patches, properties of piezoelectric fiber–reinforced composite, and functionally graded properties on the control activity of short piezoelectric fiber–reinforced composite/continuous piezoelectric fiber–reinforced composite actuator are also presented.


2018 ◽  
Vol 18 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Hamed Safarpour ◽  
Kianoosh Mohammadi ◽  
Majid Ghadiri ◽  
Mohammad M. Barooti

This article investigates the flexural vibration of temperature-dependent and carbon nanotube-reinforced (CNTR) cylindrical shells made of functionally graded (FG) porous materials under various kinds of thermal loadings. The equivalent material properties of the cylindrical shell of concern are estimated using the rule of mixture. Both the cases of uniform distribution (UD) and FG distribution patterns of reinforcements are considered. Thermo-mechanical properties of the cylindrical shell are supposed to vary through the thickness and are estimated using the modified power-law rule, by which the porosities with even and uneven types are approximated. As the porosities occur inside the FG materials during the manufacturing process, it is necessary to consider their impact on the vibration behavior of shells. The present study is featured by consideration of different types of porosities in various CNT reinforcements under various boundary conditions in a single model. The governing equations and boundary conditions are developed using Hamilton's principle and solved by the generalized differential quadrature method. The accuracy of the present results is verified by comparison with existing ones and those by Navier's method. The results show that the length to radius ratio and temperature, as well as CNT reinforcement, porosity, thermal loading, and boundary conditions, play an important role on the natural frequency of the cylindrical shell of concern in thermal environment.


2016 ◽  
Vol 26 (05) ◽  
pp. 1650077 ◽  
Author(s):  
W. Zhang ◽  
J. Chen ◽  
Y. Sun

This paper investigates the nonlinear breathing vibrations and chaos of a circular truss antenna under changing thermal environment with 1:2 internal resonance for the first time. A continuum circular cylindrical shell clamped by one beam along its axial direction on one side is proposed to replace the circular truss antenna composed of the repetitive beam-like lattice by the principle of equivalent effect. The effective stiffness coefficients of the equivalent circular cylindrical shell are obtained. Based on the first-order shear deformation shell theory and the Hamilton’s principle, the nonlinear governing equations of motion are derived for the equivalent circular cylindrical shell. The Galerkin approach is utilized to discretize the nonlinear partial governing differential equation of motion to the ordinary differential equation for the equivalent circular cylindrical shell. The case of the 1:2 internal resonance, primary parametric resonance and 1/2 subharmonic resonance is taken into account. The method of multiple scales is used to obtain the four-dimensional averaged equation. The frequency-response curves and force-response curves are obtained when considering the strongly coupled of two modes. The numerical results indicate that there are the hardening type and softening type nonlinearities for the circular truss antenna. Numerical simulation is used to investigate the influences of the thermal excitation on the nonlinear breathing vibrations of the circular truss antenna. It is demonstrated from the numerical results that there exist the bifurcation and chaotic motions of the circular truss antenna.


Sign in / Sign up

Export Citation Format

Share Document