Shear and rotatory inertia effects on large amplitude vibration of skew plates

1977 ◽  
Vol 52 (2) ◽  
pp. 155-163 ◽  
Author(s):  
M. Sathyamoorthy
1980 ◽  
Vol 47 (1) ◽  
pp. 128-132 ◽  
Author(s):  
M. Sathyamoorthy ◽  
C. Y. Chia

A nonlinear vibration theory for anisotropic elastic skew plates is developed with the aid of Hamilton’s principle. The effects of transverse shear deformation and rotatory inertia are included in the analysis. The differential equations formulated here readily reduce to the dynamic von Karman-type equations of skew plates when the shear and rotatory inertia effects are neglected. Solutions to these equations are presented for various boundary conditions in the second part of the paper.


1980 ◽  
Vol 47 (3) ◽  
pp. 662-666 ◽  
Author(s):  
Z. Celep

In this paper, the free flexural vibration of an elastic rectangular plate having initial imperfection is investigated including the effects of transverse shear and rotatory inertia. It is assumed that the vibration occurs with large amplitudes which leads to nonlinear differantial equations. On the basis of an assumed vibration mode, the modal equation of the plate is obtained and solved numerically.


1982 ◽  
Vol 104 (2) ◽  
pp. 426-431 ◽  
Author(s):  
M. Sathyamoorthy

An improved nonlinear vibration theory is used in the present analysis to study the effects of transverse shear deformation and rotatory inertia on the large amplitude vibration behavior of isotropic elliptical plates. When these effects are negligible the differential equations given here readily reduce to the well-known dynamic von Ka´rma´n equations. Based on a single-mode analysis, solutions to the governing equations are presented for immovably clamped elliptical plates by use of Galerkin’s method and the numerical Runge-Kutta procedure. An excellent agreement is found between the present results and those available for nonlinear bending and large amplitude vibration of elliptical plates. The present results for moderately thick elliptical plates indicate significant influences of the transverse shear deformation, axes ratio, and semi-major axis-to-thickness ratio on the large amplitude vibration of elliptical plates.


Sign in / Sign up

Export Citation Format

Share Document