The presence of micro-organisms in various strata of deep tropical peat deposits

Life Sciences ◽  
1964 ◽  
Vol 3 (9) ◽  
pp. 1061-1065 ◽  
Author(s):  
S.A. Visser
Radiocarbon ◽  
2008 ◽  
Vol 50 (3) ◽  
pp. 359-372 ◽  
Author(s):  
Raphael A J Wüst ◽  
Geraldine E Jacobsen ◽  
Haitse von der Gaast ◽  
Andrew M Smith

Various organic fractions of an Indonesian tropical peat deposit were dated using radiocarbon accelerator mass spectrometry (AMS). Four different depth layers, deposited during the last 28,000 14C yr, were analyzed and the data compared to bulk sample analyses. The pollen extracts consistently produced the oldest dates. The bulk samples (<250 μm and <100 μm) often yielded the youngest dates. The age difference between the individual fractions depended on the layer depth and hence the true age of the sampled peats. The age discrepancy was highest (∼16,000 14C yr) in the oldest peat material. We interpret this to be a consequence of the input of organic matter over a long period of time, with peat oxidation and/or no peat accumulation during the last glacial maximum (LGM). The age discrepancies were smaller (between 10 and 900 14C yr) for the Holocene peat samples. It was concluded that the pollen extract fraction might be the most reliable fraction for dating tropical peat deposits that are covered by deeply rooting vegetation.


2020 ◽  
Author(s):  
Tanya J. R. Lippmann ◽  
Michiel H. in 't Zandt ◽  
Nathalie N. L. Van der Putten ◽  
Freek S. Busschers ◽  
Marc P. Hijma ◽  
...  

Abstract. Northern latitude peatlands act as important carbon sources and sinks but little is known about the greenhouse gas (GHG) budget of peatlands submerged beneath the North Sea during the last glacial-interglacial transition. We found that whilst peat formation was diachronous, commencing between 13,680 and 8,360 calibrated years before the present, stratigraphic layering and local vegetation succession were consistent across a large study area. The CH4 concentrations of the sediment pore waters were low at most sites, with the exception of two locations, and the stored carbon was large. Incubation experiments in the laboratory revealed molecular signatures of methanogenic archaea, with strong increases in rates of activity upon methylated substrate amendment. Remarkably, methanotrophic activity and the respective diagnostic molecular signatures could be not be detected. Heterotrophic Bathyarchaeia dominated the archaeal communities and bacterial populations were dominated by candidate phylum JS1 bacteria. Although CH4 accumulation is low at most sites, the presence of in situ methanogenic micro-organisms, the absence of methanotrophy, and large widespread stores of carbon hold the potential for GHG production if catalysed by a change in environmental conditions. Despite being earmarked as a critical source of CH4 seepage, seepage from these basal-peat deposits is restricted, as evidenced by low in situ CH4 concentrations.


Author(s):  
L. Reimer

Most information about a specimen is obtained by elastic scattering of electrons, but one cannot avoid inelastic scattering and therefore radiation damage by ionisation as a primary process of damage. This damage is a dose effect, being proportional to the product of lectron current density j and the irradiation time t in Coul.cm−2 as long as there is a negligible heating of the specimen.Therefore one has to determine the dose needed to produce secondary damage processes, which can be measured quantitatively by a chemical or physical effect in the thin specimen. The survival of micro-organisms or the decrease of photoconductivity and cathodoluminescence are such effects needing very small doses (see table).


2014 ◽  
Vol 56 ◽  
pp. 207-219 ◽  
Author(s):  
Chi L.L. Pham ◽  
Ann H. Kwan ◽  
Margaret Sunde

Amyloids are insoluble fibrillar protein deposits with an underlying cross-β structure initially discovered in the context of human diseases. However, it is now clear that the same fibrillar structure is used by many organisms, from bacteria to humans, in order to achieve a diverse range of biological functions. These functions include structure and protection (e.g. curli and chorion proteins, and insect and spider silk proteins), aiding interface transitions and cell–cell recognition (e.g. chaplins, rodlins and hydrophobins), protein control and storage (e.g. Microcin E492, modulins and PMEL), and epigenetic inheritance and memory [e.g. Sup35, Ure2p, HET-s and CPEB (cytoplasmic polyadenylation element-binding protein)]. As more examples of functional amyloid come to light, the list of roles associated with functional amyloids has continued to expand. More recently, amyloids have also been implicated in signal transduction [e.g. RIP1/RIP3 (receptor-interacting protein)] and perhaps in host defence [e.g. aDrs (anionic dermaseptin) peptide]. The present chapter discusses in detail functional amyloids that are used in Nature by micro-organisms, non-mammalian animals and mammals, including the biological roles that they play, their molecular composition and how they assemble, as well as the coping strategies that organisms have evolved to avoid the potential toxicity of functional amyloid.


Sign in / Sign up

Export Citation Format

Share Document