Localization of a low Mr GTP-binding protein, rap1 protein, in plasma membranes and secretory granule membranes of rat parotid gland

Life Sciences ◽  
1994 ◽  
Vol 55 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Yasunaga Kameyama ◽  
Koh-ichi Nagata ◽  
Masako Mizuno-Kamiya ◽  
Yutaka Yokota ◽  
Atsushi Fujita ◽  
...  
2001 ◽  
Vol 46 (9) ◽  
pp. 789-799 ◽  
Author(s):  
Masako Mizuno-Kamiya ◽  
Hiroshi Inokuchi ◽  
Yasunaga Kameyama ◽  
Koji Yashiro ◽  
Atsushi Fujita

1991 ◽  
Vol 42 (12) ◽  
pp. 2333-2340 ◽  
Author(s):  
Yoichi Nakagawa ◽  
John Gammichia ◽  
Karnam R. Purushotham ◽  
Charlotte A. Schneyer ◽  
Michael G. Humphreys-Beher

1986 ◽  
Vol 64 (4) ◽  
pp. 304-308 ◽  
Author(s):  
B. D. Gupta ◽  
T. J. Borys ◽  
S. Deshpande ◽  
R. E. Jones ◽  
E. W. Abrahamson

In the presence of exogeneous GTP, vertebrate whole rod outer segments (ROS), with perforated plasma membranes in the "single particle" scattering range, elicit a light-induced light-scattering transient which we call the "G" signal. Here, we report on the characteristics of the "G" signal relative to the "binding" and "dissociation" signals reported by Kuhn and colleagues. Replacing GTP with guanylyl imidodiphosphate (GMP-PNP) does not give rise to the G signal. This indicates that hydrolysis of the terminal phosphate is required for the G signal and, in addition. GTP and GMP-PNP compete for the same binding site of the enzyme responsible for the G signal (i.e., GTP-binding protein). Also, neither GDP nor its nonhydrolyzable analogue, guanosine 5′-O-(2-thiodiphosphate), when present in ROS suspensions yield any light-scattering transient in the time period tested.


1991 ◽  
Vol 261 (6) ◽  
pp. F1063-F1070
Author(s):  
A. Gupta ◽  
B. Bastani ◽  
P. Chardin ◽  
K. A. Hruska

Plasma membranes from bovine kidney cortex were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes. Blotting with [alpha-32P]GTP and [35S]GTP gamma S demonstrated specific binding to three and six distinct protein bands, respectively, in the 20,000- to 29,000-Mr range. This indicated the presence of small Mr GTP binding proteins (smg) in bovine kidney cortex. Only one smg with 28,000 Mr was labeled with hydrolysis-resistant GTP photoaffinity probe p3-(4-azidoanilido)-p1-5GTP (AAGTP). The major smg in platelet membranes that binds GTP on nitrocellulose blots has been identified as ral-Mr 29,000. With the use of an antiserum against the ral A gene product, one of the smg with Mr of 29,000 present in bovine renal cortical plasma membranes was identified as ral. Ral was absent from glomerular homogenate, suggesting that it is localized to the tubular segments of the nephron. Ral was detected only in the particulate fraction and not the cytosol. Further subcellular localization of ral was investigated by immunohistochemical staining. Anti-ral antibody immunostained the apical and basolateral membranes of cells in the cortical and medullary collecting ducts in a speckled pattern in the bovine kidney. In the rat kidney, however, uniform linear staining of cortical and medullary collecting ducts predominantly localized to the apical membrane was observed. To date, no function has been assigned to ral. Localization of the ral gene product to the collecting duct suggests a specific functional role for this GTP-binding protein.


1993 ◽  
Vol 264 (3) ◽  
pp. G541-G552
Author(s):  
Y. Hiramatsu ◽  
R. Kawai ◽  
R. C. Reba ◽  
T. R. Simon ◽  
B. J. Baum ◽  
...  

(RR)- and (SS)-quinuclidinyl iodobenzilate enantiomers [(RR)- and (SS)-IQNB, active and inert, respectively] have been synthesized for quantitative evaluation of muscarinic acetylcholine receptor (mAChR) binding. Pharmacokinetic approaches have not been used previously to assess in vivo IQNB binding in nonexcitable tissues. We have applied this method to examine mAChRs in rat parotid gland in comparison to those in brain and heart. Short-term infusion studies in vivo showed that the "instantaneous" reversible binding of (RR)- and (SS)-IQNB was high in the parotid (greater nonspecific binding potential), intermediate in the heart, and lowest in cortex and cerebellum. Long-term bolus injection experiments showed that the parotid gland mAChRs possessed a binding potential for receptor specific sites (380), which was intermediate between that of parietal cortex (930) and cerebellum (10) and greater than that of heart (165). In vitro binding to plasma membranes was generally consistent with the in vivo findings. In aggregate, these studies show that mAChRs can be evaluated in vivo in a nonexcitable tissue with the use of stereospecific ligands and a pharmacokinetic approach. The data suggest that IQNB, a mAChR antagonist, can identify characteristics of specific binding sites, which may reflect tissue differences.


1997 ◽  
Vol 45 (7) ◽  
pp. 965-973 ◽  
Author(s):  
Nisha J. D'Silva ◽  
Dennis H. DiJulio ◽  
Carol M. Belton ◽  
Kerry L. Jacobson ◽  
E.L. Watson

The objective of this study was to localize rap1 in the rat parotid gland. Rap1 is a small GTP-binding protein that has been linked to phagocytosis in neutrophils and various functions in platelets. In this study, we used [α-32 P]-GTP-blot overlay analysis, immunoblot analysis, and immunohistochemistry to identify rap1 in rat parotid gland. The immunohistochemical techniques included immunoperoxidase and widefield microscopy with image deconvolution. Rap1 was identified in the secretory granule membrane (SGM), plasma membrane (PM), and cytosolic (CY) fractions, with the largest signal being in the SGM fraction. The tightly bound vs loosely adherent nature of SGM-associated rap1 was determined using sodium carbonate, and its orientation on whole granules was assessed by trypsin digestion. Rap1 was found to be a tightly bound protein rather than a loosely adherent contaminant protein of the SGM. Its orientation on the cytosolic face of the secretory granule (SG) is of significance in postulating a function for rap1 because exocytosis involves the fusion of the cytoplasmic face of the SG with the cytoplasmic face of the PM, with subsequent release of granule contents (CO). Therefore, the localization and high concentration of rap1 on the SGM and its cytosolic orientation suggest that it may play a role in the regulation of secretion.


Sign in / Sign up

Export Citation Format

Share Document