Behaviour of rare-earth elements in highly evolved granitic systems: Evidence from Proterozoic molybdenite mineralized aplites and associated granites in northern Sweden

Lithos ◽  
1989 ◽  
Vol 23 (4) ◽  
pp. 267-280 ◽  
Author(s):  
Björn Öhlander ◽  
Kjell Billström ◽  
Elke Hålenius
Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
Karel Breiter ◽  
Hans-Jürgen Förster

A comprehensive study of monazite–cheralite–huttonite solid solutions (s.s.) and xenotime from the highly evolved, strongly peraluminous P–F–Li-rich Podlesí granite stock in the Krušné Hory Mts., Czech Republic, indicates that, with the increasing degree of magmatic and high-T early post-magmatic evolution, the content of the cheralite component in monazite increases and the relative dominance of middle rare earth elements (MREE) in xenotime becomes larger. Considering the overall compositional signatures of these two accessory minerals in the late Variscan granites of the Erzgebirge/Krušné Hory Mts., three types of granites can be distinguished: (i) chemically less evolved F-poor S(I)- and A-type granites contain monazite with a smooth, mostly symmetric chondrite-normalized (CN) rare-earth elements (REE) pattern gradually declining from La to Gd; associated xenotime is Y-rich (˃0.8 apfu Y) with a flat MREE–HREE (heavy rare earth elements) pattern; (ii) fractionated A-type granites typically contain La-depleted monazite with Th accommodated as the huttonite component, combined with usually Y-poor (0.4–0.6 apfu Y) xenotime characterized by a smoothly inclining, Yb–Lu-dominant CN-REE pattern; (iii) fractionated peraluminous Li-mica granites host monazite with a flat, asymmetric (kinked at La and Nd) CN-LREE pattern, with associated xenotime distinctly MREE (Gd–Tb–Dy)-dominant. Monazite and xenotime account for the bulk of the REE budgets in all types of granite. In peraluminous S(I)-type granites, which do not bear thorite, almost all Th is accommodated in monazite–cheralite s.s. In contrast, Th budgets in A-type granites are accounted for by monazite–huttonite s.s. together with thorite. The largest portion of U is accommodated in uraninite, if present.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jun Zhi ◽  
Ruxiong Lei ◽  
Boyang Chen ◽  
M. N. Muhtar ◽  
Zhijie Feng ◽  
...  

The Zhangbaoshan (ZBS) super-large Rubidium deposit, located in the Eastern Tianshan, is a typical granite-type Rb deposit. The ZBS deposit is mainly hosted in the highly evolved Baishitouquan (BST) pluton enriched in F and Rb, which exhibits five lithological zones from the bottom to the top: leucogranite (zone-a), amazonite-bearing granite (zone-b), amazonite granite (zone-c), topaz-bearing amazonite granite (zone-d) and topaz albite granite (zone-e), as well as minor small lodes of amazonite pegmatite. Two types of zircon were identified from the BST pluton. Type-I zircons mainly occur in the zone–a, are characterized by obvious oscillatory zoning, high Zr contents (47.4–67.3 wt% ZrO2) and Zr/Hf ratios (21.72–58.23), low trace element concentrations, and heavy rare earth elements (HREE)–enriched patterns with prominent positive Ce anomalies (Ce/Ce* = 1.21–385) and strong negative Eu anomalies (Eu/Eu* = 0.008–0.551), indicative of early magmatic zircon. Type–II zircons mainly occur in the upper zones (zone-c to zone-e), exhibit porous and dark Cathodoluminescence images, inhomogeneous internal structure, plenty of mineral inclusions, low Zr (38.7–51.0 wt% ZrO2) and Zr/Hf ratios (3.35–11.00), high Hf (34,094–85,754 ppm), Th (718–4,980 ppm), U (3,540–32,901 ppm), Ta (86.7–398 ppm), Y (1,630–28,890 ppm) and rare earth elements (REEs) (3,910–30,165 ppm), as well as slightly HREE–enriched patterns and significant M–type tetrad patterns with t3 values (quantification factor of tetrad effect) of 1.51–1.69. It is suggested that the type–II zircons are crystallized from a deuteric F–rich fluid coexisted with the highly evolved residual magma during the transition from the magmatic to the F–rich hydrothermal stage of the BST pluton. The F–rich fluid exsolution during the magmatic–hydrothermal transition is one of the most important factors controlling the modification of highly evolved granite and related Rb enrichment and mineralization. The type–I zircon samples from zone–a yield concordant ages of 250 ± 2.5 Ma and 250.5 ± 1.7 Ma, respectively, indicating that the BST pluton was emplaced in the Early Triassic. The type–II zircons from zone–c to zone–e yield lower intercept U–Pb ages between 238 and 257 Ma, which may represent the age of F–rich fluid–melt interaction during the transition from the magmatic to the hydrothermal stage. The mineralization of the ZBS super–large Rb deposit should have occurred shortly after emplacement of the BST pluton in the Early Triassic. Combined with available data, it is suggested that the Triassic is an important period for granitic magmatism and rare metal metallogeny in the Eastern Tianshan.


1996 ◽  
Vol 11 (1-2) ◽  
pp. 93-99 ◽  
Author(s):  
Björn Öhlander ◽  
Magnus Land ◽  
Johan Ingri ◽  
Anders Widerlund

1962 ◽  
Vol 18 (4) ◽  
pp. 1127-1153
Author(s):  
V FASSEL ◽  
R CURRY ◽  
R KNISELEY

Sign in / Sign up

Export Citation Format

Share Document