4523145 Apparatus for the automated handling and testing of electronic modules

1986 ◽  
Vol 26 (1) ◽  
pp. 202-203
Author(s):  
GeorgeG Gray
Keyword(s):  
Mechatronics ◽  
1998 ◽  
Vol 8 (2) ◽  
pp. 85-102 ◽  
Author(s):  
R.S. Stone ◽  
P.N. Brett ◽  
B.S. Evans

2021 ◽  
Author(s):  
Oskar Weser ◽  
Björn Hein Hanke ◽  
Ricardo Mata

In this work, we present a fully automated method for the construction of chemically meaningful sets of non-redundant internal coordinates (also commonly denoted as Z-matrices) from the cartesian coordinates of a molecular system. Particular focus is placed on avoiding ill-definitions of angles and dihedrals due to linear arrangements of atoms, to consistently guarantee a well-defined transformation to cartesian coordinates, even after structural changes. The representations thus obtained are particularly well suited for pathway construction in double-ended methods for transition state search and optimisations with non-linear constraints. Analytical gradients for the transformation between the coordinate systems were derived for the first time, which allows analytical geometry optimizations purely in Z-matrix coordinates. The geometry optimisation was coupled with a Symbolic Algebra package to support arbitrary non-linear constraints in Z-matrix coordinates, while retaining analytical energy gradient conversion. Sample applications are provided for a number of common chemical reactions and illustrative examples where these new algorithms can be used to automatically produce chemically reasonable structure interpolations, or to perform non-linearly constrained optimisations of molecules.


2011 ◽  
Vol 2 (1) ◽  
pp. 18-35
Author(s):  
Daniel Fitzner

Geoprocessing operations offered via web services provide the means for building complex web-based geospatial applications. Often, certain postconditions such as the spatial reference system, bounding box, schema or quality that hold on the output dataset after the execution of a geoprocessing service are determined and derived from the properties of the inputs passed to the service. Further, geoprocesses often hold preconditions that relate to more than one input, such as the requirement that all inputs must have the same schema. Within current process descriptions for geoprocessing operations, such conditions which we call cross-parameter conditions, can not be explicitly specified. In this paper, the author gives an approach to formalize such cross input-output and cross input parameter conditions in a rule-based language. Further, the author proposes an algorithm for deriving pre- and postconditions for a service composition or workflow out of the pre- and postconditions of the services involved, allowing a more automated handling of workflows in general.


2019 ◽  
Vol 5 (1) ◽  
pp. 437-439
Author(s):  
Florian Schmieder ◽  
Christoph Polk ◽  
Felix Gottlöber ◽  
Patrick Schöps ◽  
Frank Sonntag ◽  
...  

AbstractNowadays, cell-based assays are an elementary tool for diagnostics, animal-free substance testing and basic research. Depending on the application, the spectrum ranges from simple static cell cultures in microtiter plates to dynamic co-cultures in complex micro physiological systems (organ-on-a-chip). Depending on the complexity of the assay, numerous working steps have to be performed and the data from different analysis systems have to be processed, combined and documented. A universal platform has been developed for the automated handling of cell-based assays, which combines a laboratory information management system (LIMS) with a laboratory execution system (LES), a universal laboratory automation platform and established laboratory equipment. The LIMS handles the administration of all laboratory-relevant information, the planning, control and monitoring of laboratory processes, as well as the direct and qualified processing of raw data. Using a kidney-on-achip system as an example, the realization of complex cellbased assays for the animal-free characterization of the toxicity of different antibiotics will be demonstrated. In the kidney-on-a-chip system the artificial proximal tubular barrier was formed by seeding human immortalized proximal tubule cells (RPTEC) and human blood outgrowth endothelial cells (BOEC) on ThinCert™ membranes. Transepithelial electrical resistance (TEER) was measured daily to evaluate the barrier function of the cellular layers. Fluid handling and TEER measurements were performed using a laboratory automation platform that communicates directly with the LIMS. The LES supports laboratory assistants in executing the manual handling steps of the experiments.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax4790 ◽  
Author(s):  
Sanha Kim ◽  
Yijie Jiang ◽  
Kiera L. Thompson Towell ◽  
Michael S. H. Boutilier ◽  
Nigamaa Nayakanti ◽  
...  

Automated handling of microscale objects is essential for manufacturing of next-generation electronic systems. Yet, mechanical pick-and-place technologies cannot manipulate smaller objects whose surface forces dominate over gravity, and emerging microtransfer printing methods require multidirectional motion, heating, and/or chemical bonding to switch adhesion. We introduce soft nanocomposite electroadhesives (SNEs), comprising sparse forests of dielectric-coated carbon nanotubes (CNTs), which have electrostatically switchable dry adhesion. SNEs exhibit 40-fold lower nominal dry adhesion than typical solids, yet their adhesion is increased >100-fold by applying 30 V to the CNTs. We characterize the scaling of adhesion with surface morphology, dielectric thickness, and applied voltage and demonstrate digital transfer printing of films of Ag nanowires, polymer and metal microparticles, and unpackaged light-emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document