charge analysis
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 60)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 34 (2) ◽  
pp. 256-262
Author(s):  
K. Jagadeesha ◽  
Y.L. Ramu ◽  
T. Shivalingaswamy ◽  
M. Ramegowda

Excited state intramolecular hydrogen transfer (ESIHT) reaction of 8-formyl-7-hydroxy-4-methyl coumarin (FC) in its pure and hydrated state FC-(H2O)4 (FCH) has been studied by implementing state specific time dependent density functional theory (SS-TDDFT) along with the effective fragment potential (EFP1) method for solvation with discrete water molecules. The intramolecular hydrogen bond formed between hydroxyl hydrogen (H18) and formyl oxygen (O15) and intermolecular hydrogen bonds formed due to microsolvation were explored. The studies of electrostatic potential, natural charge analysis, difference electron density map and UV-Vis spectra of both FC and FCH molecules establish the intramolecular charge transfer (ICT) states of the molecules. The vertical excitation from S0 to S1 state causes the transfer of hydroxyl hydrogen to formyl oxygen and from S1 to S3 causes the transfer of the hydrogen atom back to hydroxyl oxygen. Potential energy surface scans along intramolecular hydrogen bonding at the ground and excited states confirm the state specific ESIHT reaction in both FC and FCH molecules.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jingjing Ren ◽  
Liuchun Zheng ◽  
Feixiong Yang ◽  
Huajian Yu ◽  
Tao Zhang ◽  
...  

Metal (Fe) and nonmetal (P) were used to modify TiO2, and then, several functional groups such as P-O, P=O, Fe-O, and -OH were introduced on its surface to enhance the adsorption capacity for Cd(II), which could reach 121 mg/g. According to the experimental analysis of adsorption performance, chemical adsorption dominates the adsorption process, and the adsorption capacity increases with increasing temperature within a certain range. The results of competitive adsorption experiments showed that both Pb(II) and Cu(II) affect the adsorption of Cd(II) and that the adsorption order of P-Fe-TiO2 for heavy metal ions is Pb II > Cd II > Cu II . We further investigated the adsorption mechanism of P-Fe-TiO2 for Cd(II) and the reasons for the difference in competitive adsorption and used DFT calculations to confirm the experimental results. In the analysis of binding energy and frontier molecular orbitals (FMOs), we confirmed that charge transfer occurred during the adsorption process, so chemical reactions occurred. The binding energy of P-Fe-TiO2 and Pb(II) is the largest. The results of the competitive adsorption experiment also confirmed that the adsorbent has the greatest effect on Pb. Mulliken analysis was used to identify the best binding site on the adsorbent. The results of electrostatic potential, total potential, and differential charge analysis further prove the conclusions described above.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Diana Liepinya ◽  
Manuel Smeu

Ca-ion batteries (CIBs) have the potential to provide inexpensive energy storage, but their realization is impeded by the lack of suitable electrolytes. Motivated by recent experimental progress, we perform ab initio molecular dynamics simulations to investigate early decomposition reactions at the anode-electrolyte interface. By examining different combinations of solvent—tetrahydrofuran (THF) or ethylene carbonate (EC)—and salt—Ca(BH4)2, Ca(BF4)2, Ca(BCl4)2, and Ca(ClO4)2—we identify a variety of behavioral trends between electrolyte solutions. Next, we perform a separate trajectory with pure THF and gradually increased negative charge; despite an addition of -32e, no THF decomposition is detected. Charge analysis reveals that in a reductive environment, THF distributes excess charge evenly across its hydrocarbon backbone, while EC concentrates charge on its ester oxygens and carbonyl carbon, resulting in decomposition. Graphs of charge vs. time for both solvents reveal that EC decomposition products can be reduced by up to five electrons, while those of THF are limited to a single electron. Ultimately, we find Ca(BH4)2 and THF to be the most stable solution investigated herein, corroborating experimental evidence of its suitability as a CIB electrolyte.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan P. Scheifers ◽  
Kate A. Gibson ◽  
Boniface P. T. Fokwa

Abstract A new ternary phase, TiIrB, was synthesized by arc-melting of the elements and characterized by powder X-ray diffraction. The compound crystallizes in the orthorhombic Ti1+x Rh2−x+y Ir3−y B3 structure type, space group Pbam (no. 55) with the lattice parameters a = 8.655(2), b = 15.020(2), and c = 3.2271(4) Å. Density Functional Theory (DFT) calculations were carried out to understand the electronic structure, including a Bader charge analysis. The charge distribution of TiIrB in the Ti1+x Rh2−x+y Ir3−y B3-type phase has been evaluated for the first time, and the results indicate that more electron density is transferred to the boron atoms in the zigzag B4 units than to isolated boron atoms.


2021 ◽  
Author(s):  
Muhammad Hussnain ◽  
Rao Aqil Shehzad ◽  
Shabbir Muhammad ◽  
javed iqbal ◽  
Abdullah G. Al-Sehemi ◽  
...  

Abstract The present investigation highlights the 2-dimentional design of several interesting super alkali doped borophene derivatives for efficient nonlinear optical (NLO). Borophene (B36) and super alkali units (Li3O) whose combining effects and resulting NLO responses have been evaluated by orienting super-alkali clusters at various sites such as a hub, rim, and bridged around the B36 molecule. The charge analysis is characterized by frontier and natural bond orbital analysis, narrowed HOMO-LUMO band gap, better intramolecular charge transfers. Molecular electrostatic potential surfaces demonstrate enhanced optoelectronic features of these complexes that are viable owing to Li3O adsorption. Singly doped and doubly doped complexes have been considered and their NLO properties have been calculated. Band gap energy reduces about three times when doped with two Li3O. A considerably high figure of merit, first hyperpolarizability (bo) values up to five digits 10611 a. u. for complex A proved that these systems can be utilized as promising candidates in various NLO applications.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1098
Author(s):  
Guoliang Wang ◽  
Zhaoyang Zhao ◽  
Pengfei Zhai ◽  
Xudan Chen ◽  
Yefei Li

The surface corrosion of plutonium in air is mainly the result of the interaction with O2 and H2O in air. In this paper, the co-adsorption behavior of O2 and H2O on a δ-Pu (100) surface is studied by the first-principle method. Two different cases of preferential adsorption of H2O and O2 are considered, respectively. Bader charge analysis and adsorption energy analysis are carried out on all stable adsorption configurations, and the most stable adsorption configurations are found under the two conditions. The results of differential charge density analysis, the density of states analysis and Crystal Orbital Hamilton Populations (COHP) analysis show that the two molecules can promote each other’s adsorption behavior, which leads to the strength and stability of co-adsorption being far greater than that of single adsorption. In the co-adsorption configuration, O atoms preferentially interact with Pu atoms in the surface layer, and the essence is that the 2s and 2p orbitals of O overlap and hybridize with the 6p and 6d orbitals of Pu. H atoms mainly form O–H bonds with O atoms and hardly interact with Pu atoms on the surface layer.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yunzhen Zhang ◽  
Yuan Ping ◽  
Zhili Zhang ◽  
Guangzhe Zhao

Due to the introduction of memristors, the memristor-based nonlinear oscillator circuits readily present the state initial-dependent multistability (or extreme multistability), i.e., coexisting multiple attractors (or coexisting infinitely many attractors). The dimensionality reduction modeling for a memristive circuit is carried out to realize accurate prediction, quantitative analysis, and physical control of its multistability, which has become one of the hottest research topics in the field of information science. Based on these considerations, this paper briefly reviews the specific multistability phenomenon generating from the memristive circuit in the voltage-current domain and expounds the multistability control strategy. Then, this paper introduces the accurate flux-charge constitutive relation of memristors. Afterwards, the dimensionality reduction modeling method of the memristive circuits, i.e., the incremental flux-charge analysis method, is emphatically introduced, whose core idea is to implement the explicit expressions of the initial conditions in the flux-charge model and to discuss the feasibility and effectiveness of the multistability reconstitution of the memristive circuits using their flux-charge models. Furthermore, the incremental integral transformation method for modeling of the memristive system is reviewed by following the idea of the incremental flux-charge analysis method. The theory and application promotion of the dimensionality reduction modeling and multistability reconstitution are proceeded, and the application prospect is prospected by taking the synchronization application of the memristor-coupled system as an example.


Sign in / Sign up

Export Citation Format

Share Document