Core physics and fuel cycles of the pebble bed reactor

1975 ◽  
Vol 34 (1) ◽  
pp. 109-118 ◽  
Author(s):  
E. Teuchert ◽  
H.J. Rütten
1978 ◽  
Vol 38 (3) ◽  
pp. 374-383 ◽  
Author(s):  
Eberhard Teuchert ◽  
Hans Joachim Rütten ◽  
Heinz Werner

2019 ◽  
Author(s):  
Suwoto Suwoto ◽  
Wahid Luthfi ◽  
Hery Adrial ◽  
Zuhair

The pebble bed reactor has a flexibility to utilize a wide range of different fuel cycles without significantly modifying the reactor core geometry. These fuel cycles can be comprised of various fissile and fertile fuel isotopes. The purpose of this paper is to study the temperature coefficient of reactivity for pebble bed reactor fuelled by thorium. The HTR-Modul was chosen as the reactor model. A series of calculations was performed by the use of the Monte Carlo transport code MCNP6 with the continuous energy nuclear data library ENDF/B-VII. The k∞ calculation results show that the fuel load with a mass of 2g Th/pebble, 5g Th/pebble and 20g Th/pebble can achieve a critical core with discharge burnup of 65,644; 101,500; and 114,215 MWd/t, respectively. The calculation results of temperature coefficient conclude that specific mass of thorium per pebble might have a positive temperature coefficient of reactivity at a certain temperature. Further investigation needs to be conducted to analyze the behavior of these temperature reactivity coefficients in more detail.


Author(s):  
Dawid Serfontein ◽  
Eben Mulder ◽  
Eberhard Teuchert

HTRs, both prismatic block fuelled and pebble fuelled, feature a number of uniquely beneficial characteristics that will be discussed in this paper. In this paper the construction of an international experimental pebble bed reactor is proposed, possible experiments suggested and an invitation extended to interested partners for co-operation in the project. Experimental verification by nuclear regulators in order to facilitate licensing and the development of a new generation of reactors create a strong need for such a reactor. Suggested experiments include: • Optimized incineration of waste Pu in a pebble bed reactor: The capability to incineration pure reactor grade plutonium by means of ultra high burn-up in pebble bed reactors will be presented at this conference in the track on fuel and fuel cycles. This will enable incineration of the global stockpile of separated reactor grade Pu within a relatively short time span; • Testing of fuel sphere geometries, aimed at improving neutron moderation and a decrease in fuel temperatures; • Th/Pu fuel cycles: Previous HTR programs demonstrated the viability of a Th-232 fuel-cycle, using highly enriched uranium (HEU) as driver material. However, considerations favoring proliferation resistance limit the enrichment level of uranium in commercial reactors to 20%, thereby lowering the isotopic efficiency. Therefore, Pu driver material should be developed to replace the HEU component. Instead of deploying a (Th, Pu)O2 fuel concept, the proposal is to use the unique capability offered by pebble bed reactors in deploying separate Th- and Pu-containing pebbles, which can be cycled differently; • Testing of carbon-fiber-carbon (CFC) structures for in-core or near-core applications, such as guide tubes for reserve shutdown systems, thus creating the possibility to safely shutdown reactors with increased diameter; • Development of very high temperature reactor components for process heat applications; • Advanced decay heat removal systems e.g. design specific air flow channels, or heat pipe designs external to the reactor pressure vessel; • Development of a plutonium fuelled peaking reactor with the proposed duel cycle; • A radial coolant flow pattern with increased power output; • Testing of carbon-fiber-carbon (CFC) core barrel applications. The design will facilitate ease of licensing by sacrificing performance in favor of safety and employing redundant defense-in-depth safety systems. Speedy licensing is therefore expected. The economic model will be based on a commercial expedition of the agreed experimental value to collaborating participants. Target costs will be minimized by exploiting known technology only and by utilizing off-the-shelf components as far as possible.


Kerntechnik ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 643-647 ◽  
Author(s):  
T. Setiadipura ◽  
D. Irwanto ◽  
Zuhair

2014 ◽  
Vol 270 ◽  
pp. 295-301 ◽  
Author(s):  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
Shengyao Jiang

Author(s):  
Rainer Moormann

The AVR pebble bed reactor (46 MWth) was operated 1967–1988 at coolant outlet temperatures up to 990°C. Also because of a lack of other experience the AVR operation is a basis for future HTRs. This paper deals with insufficiently published unresolved safety problems of AVR and of pebble bed HTRs. The AVR primary circuit is heavily contaminated with dust bound and mobile metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory. A re-evaluation of the AVR contamination is performed in order to quantify consequences for future HTRs: The AVR contamination was mainly caused by inadmissible high core temperatures, and not — as presumed in the past — by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot be equipped with instruments. The maximum core temperatures were more than 200 K higher than precalculated. Further, azimuthal temperature differences at the active core margin were observed, as unpredictable hot gas currents with temperatures > 1100°C. Despite of remarkable effort these problems are not yet understood. Having the black box character of the AVR core in mind it remains uncertain whether convincing explanations can be found without major experimental R&D. After detection of the inadmissible core temperatures, the AVR hot gas temperatures were strongly reduced for safety reasons. Metallic fission products diffuse in fuel kernel, coatings and graphite and their break through takes place in long term normal operation, if fission product specific temperature limits are exceeded. This is an unresolved weak point of HTRs in contrast to other reactors and is particularly problematic in pebble bed systems with their large dust content. Another disadvantage, responsible for the pronounced AVR contamination, lies in the fact that activity released from fuel elements is distributed in HTRs all over the coolant circuit surfaces and on graphitic dust and accumulates there. Consequences of AVR experience on future reactors are discussed. As long as pebble bed intrinsic reasons for the high AVR temperatures cannot be excluded they have to be conservatively considered in operation and design basis accidents. For an HTR of 400 MWth, 900°C hot gas temperature, modern fuel and 32 fpy the contaminations are expected to approach at least the same order as in AVR end of life. This creates major problems in design basis accidents, for maintenance and dismantling. Application of German dose criteria on advanced pebble bed reactors leads to the conclusion that a pebble bed HTR needs a gas tight containment even if inadmissible high temperatures as observed in AVR are not considered. However, a gas tight containment does not diminish the consequences of the primary circuit contamination on maintenance and dismantling. Thus complementary measures are discussed. A reduction of demands on future reactors (hot gas temperatures, fuel burn-up) is one option; another one is an elaborate R&D program for solution of unresolved problems related to operation and design basis accidents. These problems are listed in the paper.


2013 ◽  
Vol 05 (04) ◽  
pp. 510-516
Author(s):  
Hongbing Liu ◽  
Peng Shen ◽  
Dong Du ◽  
Xin Wang ◽  
Haiquan Zhang

Sign in / Sign up

Export Citation Format

Share Document