Dynamic response of a clamped/ring-stiffened circular cylindrical shell under non-axisymmetric loading

1977 ◽  
Vol 43 (2) ◽  
pp. 437-453 ◽  
Author(s):  
A. Ludwig ◽  
R. Krieg
1979 ◽  
Vol 46 (4) ◽  
pp. 772-778 ◽  
Author(s):  
G. E. Cummings ◽  
H. Brandt

A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, in a potential fluid. The shell may be excited by any radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. The numerical results are compared to experimental results for a 1/12-scale model of a nuclear-reactor core-support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies are within 15 percent of experimental results. A sample application compares the numerical technique to an analytical solution for shell beam modes. The comparison resolves an uncertainty concerning the proper effective mass to use in the analytical technique.


2003 ◽  
Vol 70 (3) ◽  
pp. 364-373 ◽  
Author(s):  
A. J. Paris ◽  
G. A. Costello

A theory for the bending of cord composite laminate cylindrical shells is developed. The extension-twist coupling of the cords is taken into account. The general case of a circular cylindrical shell with cord plies at various angles to the shell axis is considered. The differential equations for the displacements are derived. These equations are solved analytically in closed form for a shell subjected to axisymmetric loading and no in-plane tractions. The results of the current study are compared with the commonly used Gough-Tangorra and Akasaka-Hirano solutions.


2007 ◽  
Vol 51 (02) ◽  
pp. 94-103
Author(s):  
Li Xuebin

Following Flu¨ gge's exact derivation for the buckling of cylindrical shells, the equations of motion for dynamic loading of a circular cylindrical shell under external hydrostatic pressure have been formulated. The normal mode theory is used to provide transient dynamic response for the equations of motion. The responses of displacements, strain, and stress are obtained for the area of impact, while those outside the area of impact are also calculated. The accuracy of normal mode theory and Timoshenko shell theory are examined in this paper.


1968 ◽  
Vol 35 (2) ◽  
pp. 297-305 ◽  
Author(s):  
H. Reismann ◽  
P. S. Pawlik

An analytical study of the plane-strain dynamic response of a circular, cylindrical shell is presented. The shell is subjected to a radially directed concentrated impulse acting on its surface. Solutions are presented within the framework of (a) membrane theory, (b) Flu¨gge theory, and (c) improved theory (including shear deformation and rotatory inertia). A quantitative study of the initial motion of the shell indicates major differences in response prediction of the three theories. An explanation of these differences is offered.


Sign in / Sign up

Export Citation Format

Share Document