Ecostratigraphy and sequence stratigraphy in high frequency sea level fluctuations: examples from Jurassic macroinvertebrate assemblages

1993 ◽  
Vol 101 (1-2) ◽  
pp. 131-145 ◽  
Author(s):  
Federico Olóriz ◽  
Francisco J. Rodriguez-Tovar ◽  
Beatriz Marques ◽  
Jesús E. Caracuel
2020 ◽  
Vol 298 (3) ◽  
pp. 285-309
Author(s):  
Forough Abasaghi ◽  
Asadollah Mahboubi ◽  
Mohammad Hosein Mahmoudi Gharaie ◽  
Mohammad Khanehbad

Zoophycos is widely distributed in the marine strata of the Middle Permian Ruteh For- mation in the Alborz Mountain, Iran. The investigation of the Zoophycos, along with environmental variables is a useful tool for interpretation of the palaeoenvironmental and sequence stratigraphy anal- ysis. The petrographic observations led to the identification of ten facies in four facies belts including tidal flat, lagoon, shoal, and open marine, deposited on a homoclinal ramp. Moreover, two third- order depositional sequences were recognized in response to the sea- level fluctuations within the Ruteh For - mation. Detailed studies of the sequence stratigraphy revealed a relationship between the occurrences of Zoophycos and changes in the hydrodynamic condition in the basin. It appears that Zoophycos has been influenced by the ecological and palaeoenvironmental parameters, such as sedimentation rate, nutrient supply, oxygen, wave base, and substrate in the shallow to deep environments. Based on the sedimentological and ichnological analysis, Zoophycos has been formed with various dimensions, morphology, fillings, and densities together with rising and falling in the sea-level. The trace- maker has followed an opportunistic strategy in the unstable conditions of shallow environments, whereas it has chosen a k-selected strategy in more stable deep environments. Additionally, variability in Zoophycos illustrates, how the trace- maker adopted itself with environmental sequences. This reason, owing to optimal conditions, has caused that the abundance of Zoophycos was high in the Transgres- sive System Tracts (TST). Evidence shows that the response of Zoophycos to the ecological properties of the environment usually has deposit- feeder and chemosymbiosis behaviours.


2014 ◽  
Vol 151 (5) ◽  
pp. 938-955 ◽  
Author(s):  
NICOLAS OLIVIER ◽  
ARNAUD BRAYARD ◽  
EMMANUEL FARA ◽  
KEVIN G. BYLUND ◽  
JAMES F. JENKS ◽  
...  

AbstractIn Timpoweap Canyon near Hurricane (Utah, USA), spectacular outcrop conditions of Early Triassic rocks document the geometric relationships between a massive Smithian fenestral-microbial unit and underlying, lateral and overlying sedimentary units. This allows us to reconstruct the evolution of depositional environments and high-frequency relative sea-level fluctuations in the studied area. Depositional environments evolved from a coastal plain with continental deposits to peritidal settings with fenestral-microbial limestones, which are overlain by intertidal to shallow subtidal marine bioclastic limestones. This transgressive trend of a large-scale depositional sequence marks a long-term sea-level rise that is identified worldwide after the Permian–Triassic boundary. The fenestral-microbial sediments were deposited at the transition between continental settings (with terrigenous deposits) and shallow subtidal marine environments (with bioturbated and bioclastic limestones). Such a lateral zonation questions the interpretation of microbial deposits as anachronistic and disaster facies in the western USA basin. The depositional setting may have triggered the distribution of microbial deposits and contemporaneous marine biota. The fenestral-microbial unit is truncated by an erosional surface reflecting a drop in relative sea level at the scale of a medium depositional sequence. The local inherited topography allowed the recording of small-scale sequences characterized by clinoforms and short-distance lateral facies changes. Stratal stacking pattern and surface geometries allow the reconstruction of relative sea-level fluctuations and tracking of shoreline migrations. The stacking pattern of these small-scale sequences and the amplitude of corresponding high-frequency sea-level fluctuations are consistent with climatic control. Large- and medium-scale sequences suggest a regional tectonic control.


Sign in / Sign up

Export Citation Format

Share Document