tidal deposits
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Daan Beelen ◽  
Lesli Wood ◽  
Mohamed Zaghloul ◽  
Michiel Arts ◽  
Sebastian Cardona

Sea strait geographies amplify tidal currents, which can result in the formation of tidal strait deposits with a symmetrical facies arrangement. It can be problematic to distinguish such confined tidal strait deposits from strait systems that developed in less constricted settings. To push a more robust differentiation between the confined tidal strait model and a model for less constricted tidal deposits, this study presents an example of a strait-adjacent delta and compares it to the existing model of confined tidal straits. The strait-adjacent delta interpretations are based on an exposed succession in Northern Morocco, that formed in the Miocene Rifian Corridor. The multi-km, seismic-scale exposures at the Ben Allou locality, formed in a region with a largely unconstrained coastline. Clayey and silty portions dominate the distal offshore and prodelta facies, while the proximal delta front and delta plain are comprised of carbonate-rich sandstones. These sandstones exhibit complex architectures of stacked channels and dunes in the delta front, and mud drape-bearing sand sheets on the delta plain. It is shown that the strait-adjacent delta model that is presented herein, is different from a confined tidal strait deposit as it has an asymmetric facies arrangement, and a basinward reduction in depositional energy.


2021 ◽  
Vol 74 (1) ◽  
pp. 41-56
Author(s):  
Radovan Avanić ◽  
◽  
Davor Pavelić ◽  
Zoltan Pécskay ◽  
Mirjana Miknić ◽  
...  

The Macelj formation is an informal Eggenburgian-early Ottnangian lithostratigraphic unit that is established in the area of the Hrvatsko Zagorje Basin, which represented a marginal zone of the Early Miocene Central Paratethys Sea. Modern studies, as a part of the Geologic Map of the Republic of Croatia 1:50 000 project, yielded new data that improves the knowledge of the depositional and stratigraphic characteristics of the formation. The sedimentological research within this study was focused on the two older lithostratigraphic units of the Macelj formation: the Vučji Jarek member and the Čemernica member. The Vučji Jarek mb. is represented by three facies. The Facies of horizontally bedded sandstones is characterized by mostly medium-grained, moderately sorted sandstones that reflect deposition on the foreshore to the upper shoreface. The facies of horizontally and cross-bedded glauconitic sandstones is composed of fine- to coarsegrained, well-sorted sandstones that indicate foreshore to shoreface deposition under tidal influence. The Facies of horizontally and cross-bedded pyroclastics consists of tuff, pumice, lapilli and large blocks, showing a chaotic structure in places. Deposition occurred at the shoreface under tidal influence. The Čemernica mb. is represented by the Facies of structureless clayey-silty sands that are poorly sorted and bioturbated, and indicates deposition below the fairweather wavebase, in the offshore-transition zone. Deposits of the members include marine macro- and microfossil associations. K-Ar dating of separated glauconite mineral fractions yielded an early Eggenburgian age for the Vučji Jarek mb. glauconitic sandstones (19.2±0.64 Ma) which is in accordance with biostratigraphical analyses. Sedimentological characteristics of the Eggenburgian Macelj fm., especially those that reflect the tidal influence, fit the general characteristics of the Central Paratethys Sea in the Early Miocene.


Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. 1149-1153
Author(s):  
Yang Peng ◽  
Cornel Olariu ◽  
Ronald J. Steel

Abstract Many modern deltas exhibit a compound geometry that consists of a shoreline clinoform and a larger subaqueous clinoform connected through a subaqueous platform. Despite the ubiquity of compound clinoforms in modern deltas, very few examples have been documented from the ancient sedimentary record. We present recognition criteria for shelf compound-clinoform systems in both tide- and wave-dominated deltas by integration of ancient and modern examples from multiple types of data. The compound clinothem can be identified by using a combination of: (1) the three-dimensional (3-D) configuration identified in bathymetric or seismic data, (2) bipartite stacked regressive units, consisting of a lower muddy coarsening-to-fining-upward (CUFU) or coarsening-upward (CU) unit (30–100 m thick) and an overlying sandier CU unit (5–30 m thick) (together they represent the subaqueous and shoreline clinoform pair), and (3) distinct facies described herein, though both types of delta have highly bioturbated mudstone and siltstone bottomsets. Tide-dominated deltas have muddy foresets with tidal scours containing tidal rhythmites or inclined heterolithic strata in the subaqueous clinothem overlain by river and tidal deposits of the shoreline clinothem. Wave-dominated deltas show mainly wave-enhanced sediment-gravity-flow (WSGF) beds and some thin hummocky/swaley cross-stratified (HCS/SCS) sandstones toward the top in the subaqueous muddy foreset, and upward-thickening HCS/SCS and trough/planar cross-bedded sandstones interbedded with siltstones in the shoreline clinothem. The subaqueous platform, which links the clinoform couplet, shows evidence of frequent tidal or wave reworking and redeposition. The platform in tide-dominated deltas is characterized by tide-generated heterolithic strata (e.g., bidirectional current-rippled and cross-stratified sandstones, spring and neap tidal bundles, tidal rhythmites) with occasional storm-wave–influenced strata. In contrast, the wave-dominated platform comprises small-scale swales with scours and mud clasts and some WSGF deposits. The proposed criteria can aid in the recognition of compound deltaic clinothems in other basins, particularly those with limited amounts and/or types of data.


2020 ◽  
Vol 342 ◽  
pp. 105668
Author(s):  
Brennan O'Connell ◽  
Malcolm W. Wallace ◽  
Ashleigh v.S. Hood ◽  
Maxwell A. Lechte ◽  
Noah J. Planavsky

2016 ◽  
Vol 444 (1) ◽  
pp. 287-303 ◽  
Author(s):  
Annalize Q. McLean ◽  
Brent Wilson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document