shore platforms
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 21)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Aidan Duart McLean

<p>Global sea level rise is contributing to the acceleration of cliff erosion rates in New Zealand, where it surpasses rates of uplift. A significant challenge facing scientists and managers is that we have no method for reliably extracting past rates of coastal erosion along harder rock cliffs over the time-scales that significant sea level change occurs (100s-1000s of years). This gap in knowledge is limiting efforts to model and understand the relationship between sea level rise and cliff erosion rates and what form of that relationship takes. Cosmogenic Beryllium-10 analysis has been applied on two low angle shore platforms in New Zealand to produce chronologies of sea cliff retreat during the late-Holocene. Surface exposure ages were attained on a tectonically active platform at Kaikoura, Canterbury and a tectonically quiescent platform at Cape Rodney, Auckland. This is the first application of cosmogenic nuclides to a shore platform study in New Zealand and adds two new data-sets to the very small group of global shore platform chronologies. Exposure ages show New Zealand platforms have developed in the late-Holocene. Long-term platform surface erosion rates at Kaikoura (0.4mm a-1), potentially due to uplift driven positive feedback such as altered sea level position, driving up weathering rates on the tidally inundated platform. Nuclide concentrations at Okakari Point, Rodney, reveal a significant role of recent sea level fall after ~4000yrs BP, driving surface denudation (0.1mm a-1). The long-term cliff back-wearing rate at Okakari point was found to be 24.66mm a-1. Patterns in cosmogenic nuclide concentrations in New Zealand’s shallow platforms differ from global examples recorded on steeper platforms. Exploratory numerical modelling was applied with the coupled Rocky Profile CRN model (RPM_CRN) to identify process relationships between key drivers within platform coastal systems and scenarios of sea level change and active tectonics. This combined geochemical and numerical modelling study has shown that shore platforms in New Zealand have complex histories, with different potential driving forces at Kaikoura and Okakari. This highlights the local variability in platform development and cliff retreat, suggesting that estimates of future shoreline erosion will need to take local contingencies into account.</p>


2021 ◽  
Author(s):  
◽  
Aidan Duart McLean

<p>Global sea level rise is contributing to the acceleration of cliff erosion rates in New Zealand, where it surpasses rates of uplift. A significant challenge facing scientists and managers is that we have no method for reliably extracting past rates of coastal erosion along harder rock cliffs over the time-scales that significant sea level change occurs (100s-1000s of years). This gap in knowledge is limiting efforts to model and understand the relationship between sea level rise and cliff erosion rates and what form of that relationship takes. Cosmogenic Beryllium-10 analysis has been applied on two low angle shore platforms in New Zealand to produce chronologies of sea cliff retreat during the late-Holocene. Surface exposure ages were attained on a tectonically active platform at Kaikoura, Canterbury and a tectonically quiescent platform at Cape Rodney, Auckland. This is the first application of cosmogenic nuclides to a shore platform study in New Zealand and adds two new data-sets to the very small group of global shore platform chronologies. Exposure ages show New Zealand platforms have developed in the late-Holocene. Long-term platform surface erosion rates at Kaikoura (0.4mm a-1), potentially due to uplift driven positive feedback such as altered sea level position, driving up weathering rates on the tidally inundated platform. Nuclide concentrations at Okakari Point, Rodney, reveal a significant role of recent sea level fall after ~4000yrs BP, driving surface denudation (0.1mm a-1). The long-term cliff back-wearing rate at Okakari point was found to be 24.66mm a-1. Patterns in cosmogenic nuclide concentrations in New Zealand’s shallow platforms differ from global examples recorded on steeper platforms. Exploratory numerical modelling was applied with the coupled Rocky Profile CRN model (RPM_CRN) to identify process relationships between key drivers within platform coastal systems and scenarios of sea level change and active tectonics. This combined geochemical and numerical modelling study has shown that shore platforms in New Zealand have complex histories, with different potential driving forces at Kaikoura and Okakari. This highlights the local variability in platform development and cliff retreat, suggesting that estimates of future shoreline erosion will need to take local contingencies into account.</p>


2021 ◽  
pp. 106691
Author(s):  
Runjie Yuan ◽  
David M. Kennedy ◽  
Wayne J. Stephenson ◽  
Brian L. Finlayson

2021 ◽  
Vol 9 ◽  
Author(s):  
Alexis Van Blunk ◽  
Andrew B. Kennedy ◽  
Rónadh Cox

Coastal boulder deposits (CBD) are wave-emplaced supratidal accumulations that record extreme inundation on rocky coasts. They are poorly understood but are of growing importance as we seek to better understand the extremes of wave power on coastlines. The Aran Islands, Ireland, host CBD in varying settings ranging from sheer cliff tops to wide shore platforms, and at elevations to about 40 m above sea level. Deposits are known to be active during strong storm events and provide a unique opportunity to examine relationships between wave energy, setting, and CBD occurrence. We use topographic elevation (Z) and offshore 100-years significant wave height (Hs,100) to calculate a dimensionless elevation Z* = Z/Hs,100 at 25 m intervals all along the Atlantic-facing coasts of the Aran Islands, and record whether CBD were present or absent at each location. The data reveal universal CBD presence at locations with low dimensionless elevations and near-monotonic decreasing frequency of CBD occurrence as Z* increases. On the Aran Islands, CBD are restricted to locations with Z*&lt;3.13. For high elevation deposits it appears that unresolved local factors may be the major determinants in whether CBD will form. This approach can be applied at any CBD-bearing coastline and has the potential to change the way that we think about these deposits. Evaluation of dimensionless elevations at CBD locations around the world will help build broader understanding of the impact local shoreline conditions have on CBD formation. Determining these relationships contributes to the ongoing need to better understand interactions between extreme waves and rocky coasts.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2127
Author(s):  
Stefano Furlani ◽  
Valeria Vaccher ◽  
Fabrizio Antonioli ◽  
Mauro Agate ◽  
Sara Biolchi ◽  
...  

The Mediterranean Basin is characterized by a significant variability in tectonic behaviour, ranging from subsidence to uplifting. However, those coastal areas considered to be tectonically stable show coastal landforms at elevations consistent with eustatic and isostatic sea level change models. In particular, geomorphological indicators—such as tidal notches or shore platforms—are often used to define the tectonic stability of the Mediterranean coasts. We present the results of swim surveys in nine rocky coastal sectors in the central Mediterranean Sea using the Geoswim approach. The entire route was covered in 22 days for a total distance of 158.5 km. All surveyed sites are considered to have been tectonically stable since the last interglacial (Marine Isotope Stage 5.5 [MIS 5.5]), because related sea level markers fit well with sea level rise models. The analysis of visual observations and punctual measurements highlighted that, with respect to the total length of surveyed coast, the occurrence of tidal notches, shore platforms, and other indicators accounts for 85% of the modern coastline, and only 1% of the MIS 5.5 equivalent. Therefore, only 1% of the surveyed coast showed the presence of fossil markers of paleo sea levels above the datum. This significant difference is mainly attributable to erosion processes that did not allow the preservation of the geomorphic evidence of past sea level stands. In the end, our research method showed that the feasibility of applying such markers to define long-term tectonic behaviour is much higher in areas where pre-modern indicators have not been erased, such as at sites with hard bedrock previously covered by post-MIS 5.5 continental deposits, e.g., Sardinia, the Egadi Islands, Ansedonia, Gaeta, and Circeo. In general, the chances of finding such preserved indicators are very low.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Alejandro Gómez-Pazo ◽  
Augusto Pérez-Alberti

Rocky coasts represent three quarters of all coastlines worldwide. These areas are part of ecosystems of great ecological value, but their steep configuration and their elevation make field surveys difficult. This fact, together with their lower variation rates, explains the lower numbers of publications about cliffs and rocky coasts in general compared with those about beach-dune systems. The introduction of UAVs in research, has enormously expanded the possibilities for the study of rocky coasts. Their relative low costs allow for the generation of information with a high level of detail. This information, combined with GIS tools, enables coastal analysis based on Digital Models and high spatial resolution images. This investigation summarizes the main results obtained with the help of UAVs between 2012 and the present day in rocky coastline sections in the northwest of the Iberian Peninsula. These investigations have particularly focused on monitoring the dynamics of boulder beaches, cliffs, and shore platforms, as well as the structure and function of ecosystems. This work demonstrates the importance of unmanned aerial vehicles (UAVs) for coastal studies and their usefulness for improving coastal management. The Galician case was used to explain their importance and the advances in the UAVs’ techniques.


2021 ◽  
Author(s):  
Vincent Regard ◽  
Joseph Martinod ◽  
Marianne Saillard ◽  
Sébastien Carretier ◽  
Laetitia Leanni ◽  
...  

&lt;p&gt;We explore the coastal morphology along an uplifting 500 km-long coastal segment of&amp;#160;&amp;#160; the Central Andes, between the cities of Chala (Peru) and Arica (Chile). We use accurate DEM and field surveys to extract sequences of uplifted shorelines along the study area. In addition, we consider continental pediment surfaces that limit both the geographical and vertical extent of the marine landforms. We establish a chronology based on published dates for marine landforms and pediment surfaces. We expand this corpus with new &lt;sup&gt;10&lt;/sup&gt;Be data on uplifted shore platforms. The last 12 Ma are marked by three periods of coastal stability or subsidence dated ~12-11&amp;#160;Ma, ~8-7 Ma and ~5-2.5 Ma ago. The uplift that accumulated between these stability periods has been ~1000 m since 11 Ma; its rate can reach 0.25&amp;#160;mm/a (m/ka). For the last period of uplift only, during the last 800 ka, the forearc uplift has been accurately recorded by the carving of numerous coastal sequences. Within these sequences, we correlated the marine terraces with the sea level highstands (interglacial stages and sub-stages) up to MIS 19 (790 ka), i.e., with a resolution of ~100&amp;#160;ka. The uplift rate for this last period of uplift increases westward from 0.18 mm/a at the Peru-Chile border to ~0.25 mm/a in the center of the study area. It further increases northwestward, up to 0.45 mm/a, due to the influence of the Nazca Ridge. In this study, we document an unusual forearc cyclic uplift with ~4 Ma-long cycles. This periodicity corresponds to the predictions made by Menant et al. (2020) based on numerical models, and could be related to episodic tectonic underplating (subducting slab stripping) beneath the coastal forearc area.&lt;/p&gt;


Geomorphology ◽  
2020 ◽  
Vol 371 ◽  
pp. 107437
Author(s):  
Runjie Yuan ◽  
David M. Kennedy ◽  
Wayne J. Stephenson ◽  
Brian L. Finlayson

Sign in / Sign up

Export Citation Format

Share Document