Partial melting and the low-velocity zone

1970 ◽  
Vol 4 (1) ◽  
pp. 62-64 ◽  
Author(s):  
Don L. Anderson ◽  
Hartmut Spetzler

Basaltic magmas are formed by partial melting of a source rock of peridotitic composition (pyrolite) under upper mantle conditions. Experimental studies of the mineralogy of pyrolite and the melting relations of various basaltic magmas under high-pressure conditions are integrated in an attempt to present an internally consistent model of source composition, derived liquid compositions and residual mantle compositions. The role of a small (0.1 %) content of water in the upper mantle is treated in some detail. The presence of the low velocity zone in the upper mantle is attributed to a small (< 5 %) degree of melting of pyrolite containing approximately 0.1% water. The small liquid fraction present in the low-velocity zone is highly undersaturated olivine nephelinite or olivine melilite nephelinite. Other magma types of direct upper mantle derivation ranging from olivine trachybasalt to olivine melilitite and to tholeiitic picrite are assigned to a genetic grid expressing the depth (pressure) of magma segregation, the degree of partial melting of the source pyrolite, the water content and approximate temperature of the magma. While this genetic model can account for variations in major element abundances and normative mineralogy among basalts, there are variations in abundances of the incompatible elements, particularly K, Rb, Ba, and the rare earths, which are inconsistent with a model invoking a constant source composition for all mantle-derived basalts. Additional factors producing source inhomogeneity, particularly in incompatible element abundances, include the possibility of two-stage melting and of chemical zoning within the low-velocity zone. It is suggested that vertical migration of a fluid or incipient melt phase, enriched in H 2 O, CO 2 and incompatible elements, occurs within the low-velocity zone. The evolution of continental and oceanic rift systems and of the Hawaiian volcanic province is discussed in relation to the depths and conditions of magma genesis derived from the models of magma genesis.


2012 ◽  
Vol 337-338 ◽  
pp. 25-38 ◽  
Author(s):  
Ralf T.J. Hansen ◽  
Michael G. Bostock ◽  
Nikolas I. Christensen

2021 ◽  
Author(s):  
JD Eccles ◽  
AK Gulley ◽  
PE Malin ◽  
CM Boese ◽  
John Townend ◽  
...  

© 2015. American Geophysical Union. All Rights Reserved. Fault Zone Guided Waves (FZGWs) have been observed for the first time within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Ongoing study of these phases provides the opportunity to monitor interseismic conditions in the fault zone. Distinctive dispersive seismic codas (~7-35Hz) have been recorded on shallow borehole seismometers installed within 20m of the principal slip zone. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Initial modeling of the low-velocity zone indicates a waveguide width of 60-200m with a 10-40% reduction in S wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.


1979 ◽  
Vol 69 (2) ◽  
pp. 369-378
Author(s):  
George A. McMechan

abstract Plotting of three-dimensional ray surfaces in p-Δ-z space provides a means of determining p-Δ curves for any focal depth. A region of increasing velocity with depth is represented in p-Δ-z space by a trough, and a region of decreasing velocity, by a crest. Two sets of ray trajectories, the arrivals refracted outside a low-velocity zone, and the guided waves inside the zone, can be merged into a single set along the ray that splits into two at the top of the low-velocity zone. This ray is common to both sets. This construction provides continuity of the locus of ray turning points through the low-velocity zone and thus allows definition of p-Δ curves inside as well as outside the low-velocity zone.


1978 ◽  
Vol 41 (4) ◽  
pp. 670-683 ◽  
Author(s):  
P. J. Wyllie

Sign in / Sign up

Export Citation Format

Share Document